論文の概要: Benchmarking Jetson Edge Devices with an End-to-end Video-based Anomaly
Detection System
- arxiv url: http://arxiv.org/abs/2307.16834v3
- Date: Tue, 12 Sep 2023 22:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 18:27:48.563571
- Title: Benchmarking Jetson Edge Devices with an End-to-end Video-based Anomaly
Detection System
- Title(参考訳): エンドツーエンドビデオベース異常検出システムを用いたジェットソンエッジデバイスのベンチマーク
- Authors: Hoang Viet Pham, Thinh Gia Tran, Chuong Dinh Le, An Dinh Le, Hien Bich
Vo
- Abstract要約: 監視ビデオから入力されるエンドツーエンドのビデオベース犯罪シーン異常検知システムを実装した。
システムは複数のJetsonエッジデバイス(Nano、AGX Xavier、Orin Nano)で運用されている。
私たちは,さまざまなJetson Edgeデバイスに,AIベースのシステムデプロイメントをDockerテクノロジで実施した経験を提供します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Innovative enhancement in embedded system platforms, specifically hardware
accelerations, significantly influence the application of deep learning in
real-world scenarios. These innovations translate human labor efforts into
automated intelligent systems employed in various areas such as autonomous
driving, robotics, Internet-of-Things (IoT), and numerous other impactful
applications. NVIDIA's Jetson platform is one of the pioneers in offering
optimal performance regarding energy efficiency and throughput in the execution
of deep learning algorithms. Previously, most benchmarking analysis was based
on 2D images with a single deep learning model for each comparison result. In
this paper, we implement an end-to-end video-based crime-scene anomaly
detection system inputting from surveillance videos and the system is deployed
and completely operates on multiple Jetson edge devices (Nano, AGX Xavier, Orin
Nano). The comparison analysis includes the integration of Torch-TensorRT as a
software developer kit from NVIDIA for the model performance optimisation. The
system is built based on the PySlowfast open-source project from Facebook as
the coding template. The end-to-end system process comprises the videos from
camera, data preprocessing pipeline, feature extractor and the anomaly
detection. We provide the experience of an AI-based system deployment on
various Jetson Edge devices with Docker technology. Regarding anomaly
detectors, a weakly supervised video-based deep learning model called Robust
Temporal Feature Magnitude Learning (RTFM) is applied in the system. The
approach system reaches 47.56 frames per second (FPS) inference speed on a
Jetson edge device with only 3.11 GB RAM usage total. We also discover the
promising Jetson device that the AI system achieves 15% better performance than
the previous version of Jetson devices while consuming 50% less energy power.
- Abstract(参考訳): 組み込みシステムプラットフォーム、特にハードウェアアクセラレーションの革新的強化は、現実世界のシナリオにおけるディープラーニングの適用に大きな影響を与える。
これらのイノベーションは、人間の労働力を自律運転、ロボット工学、IoT(Internet-of-Things)など、さまざまな分野で使用されている自動化インテリジェントシステムに変換する。
NVIDIAのJetsonプラットフォームは、ディープラーニングアルゴリズムの実行におけるエネルギー効率とスループットに関する最適なパフォーマンスを提供するパイオニアの1つである。
以前は、ほとんどのベンチマーク分析は、比較結果ごとに1つのディープラーニングモデルを持つ2D画像に基づいていた。
本稿では,監視ビデオから入力されるエンドツーエンドのビデオベース犯罪シーン異常検知システムを実装し,複数のJetsonエッジデバイス(Nano, AGX Xavier, Orin Nano)で完全に動作させる。
比較分析では、モデルパフォーマンスの最適化のためにNVIDIAのソフトウェア開発キットとしてTorch-TensorRTを統合している。
このシステムは、facebookのpyslowfastオープンソースプロジェクトに基づいて、コーディングテンプレートとして構築されている。
エンドツーエンドシステムプロセスは、カメラからの映像、データ前処理パイプライン、特徴抽出装置、異常検出を含む。
私たちは,さまざまなJetson Edgeデバイスに,AIベースのシステムデプロイメントをDockerテクノロジで実施した経験を提供します。
異常検出器については,ロバスト時間特徴量学習(rtfm)と呼ばれる弱教師付きビデオベース深層学習モデルを適用した。
アプローチシステムは、Jetsonエッジデバイス上の毎秒47.56フレーム(FPS)の推論速度に到達し、RAM使用量は3.11GBである。
また、aiシステムが前バージョンのjetsonデバイスよりも15%優れた性能を実現し、50%のエネルギーを消費する有望なjetsonデバイスも発見する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Benchmarking Deep Learning Models for Object Detection on Edge Computing Devices [0.0]
YOLOv8 (Nano, Small, Medium), EfficientDet Lite (Lite0, Lite1, Lite2), SSD (SSD MobileNet V1, SSDLite MobileDet) など,最先端のオブジェクト検出モデルの評価を行った。
これらのモデルをRaspberry Pi 3、4、5、TPUアクセラレーター、Jetson Orin Nanoといった一般的なエッジデバイスにデプロイし、エネルギー消費、推論時間、平均精度(mAP)といった重要なパフォーマンス指標を収集しました。
この結果から,SSD MobileNet V1などの低mAPモデルの方がエネルギー効率が高く,高速であることが示唆された。
論文 参考訳(メタデータ) (2024-09-25T10:56:49Z) - Arena: A Patch-of-Interest ViT Inference Acceleration System for Edge-Assisted Video Analytics [18.042752812489276]
視覚変換器(ViT)を用いたエッジ・ツー・エンドビデオ推論高速化システムを提案する。
その結果、Arenaは平均で1.58(時間)と1.82(時間)の推論速度を向上でき、それぞれ帯域幅の47%と31%しか消費していないことがわかった。
論文 参考訳(メタデータ) (2024-04-14T13:14:13Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Self-Distilled Masked Auto-Encoders are Efficient Video Anomaly
Detectors [117.61449210940955]
ビデオフレームレベルで適用された軽量マスク付きオートエンコーダ(AE)に基づく効率的な異常事象検出モデルを提案する。
動き勾配に基づく重みトークンへのアプローチを導入し、静的背景シーンから前景オブジェクトへ焦点を移す。
トレーニングビデオの強化のために合成異常事象を生成し,マスク付きAEモデルを用いてオリジナルのフレームを共同で再構築する。
論文 参考訳(メタデータ) (2023-06-21T06:18:05Z) - Benchmarking Edge Computing Devices for Grape Bunches and Trunks
Detection using Accelerated Object Detection Single Shot MultiBox Deep
Learning Models [2.1922186455344796]
この研究は、オブジェクト検出のための異なるプラットフォームのパフォーマンスをリアルタイムでベンチマークする。
著者らは、自然なVineデータセットを使用して、RetinaNet ResNet-50を微調整した。
論文 参考訳(メタデータ) (2022-11-21T17:02:33Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - Real-time HOG+SVM based object detection using SoC FPGA for a UHD video
stream [0.0]
本稿では、HOG(Histogram of Oriented Gradients)特徴抽出とSVM(Support Vector Machine)分類を用いた、よく知られた歩行者検出器のリアルタイム実装について述べる。
このシステムは、歩行者を単一のスケールで検出することができる。
論文 参考訳(メタデータ) (2022-04-22T10:29:21Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Accelerating Deep Learning Applications in Space [0.0]
拘束デバイス上でのCNNを用いた物体検出の性能について検討する。
我々は、Single Shot MultiBox Detector (SSD)とリージョンベースのFully Convolutional Network (R-FCN)について詳しく検討する。
性能は、推測時間、メモリ消費、精度で測定される。
論文 参考訳(メタデータ) (2020-07-21T21:06:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。