論文の概要: Real-time HOG+SVM based object detection using SoC FPGA for a UHD video
stream
- arxiv url: http://arxiv.org/abs/2204.10619v1
- Date: Fri, 22 Apr 2022 10:29:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-25 18:54:43.016511
- Title: Real-time HOG+SVM based object detection using SoC FPGA for a UHD video
stream
- Title(参考訳): UHDビデオストリームのためのSoCFPGAを用いたリアルタイムHOG+SVMオブジェクト検出
- Authors: Mateusz Wasala and Tomasz Kryjak
- Abstract要約: 本稿では、HOG(Histogram of Oriented Gradients)特徴抽出とSVM(Support Vector Machine)分類を用いた、よく知られた歩行者検出器のリアルタイム実装について述べる。
このシステムは、歩行者を単一のスケールで検出することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection is an essential component of many vision systems. For
example, pedestrian detection is used in advanced driver assistance systems
(ADAS) and advanced video surveillance systems (AVSS). Currently, most
detectors use deep convolutional neural networks (e.g., the YOLO -- You Only
Look Once -- family), which, however, due to their high computational
complexity, are not able to process a very high-resolution video stream in
real-time, especially within a limited energy budget. In this paper we present
a hardware implementation of the well-known pedestrian detector with HOG
(Histogram of Oriented Gradients) feature extraction and SVM (Support Vector
Machine) classification. Our system running on AMD Xilinx Zynq UltraScale+
MPSoC (Multiprocessor System on Chip) device allows real-time processing of 4K
resolution (UHD -- Ultra High Definition, 3840 x 2160 pixels) video for 60
frames per second. The system is capable of detecting a pedestrian in a single
scale. The results obtained confirm the high suitability of reprogrammable
devices in the real-time implementation of embedded vision systems.
- Abstract(参考訳): 物体検出は多くの視覚システムにおいて必須の要素である。
例えば、高度運転支援システム(ADAS)や高度映像監視システム(AVSS)では歩行者検出が用いられている。
現在、ほとんどの検出器は深層畳み込みニューラルネットワーク(例えば、YOLO -- You Only Look Once -- family)を使用しているが、計算の複雑さのため、特に限られたエネルギー予算の中で、非常に高解像度のビデオストリームをリアルタイムに処理することはできない。
本稿では,hog (histogram of oriented gradients) 特徴抽出とsvm (support vector machine) 分類を用いた,よく知られた歩行者検出器のハードウェア実装を提案する。
我々のシステムはAMD Xilinx Zynq UltraScale+ MPSoC (Multiprocessor System on Chip) デバイス上で動作しており、4K解像度のリアルタイム処理(UHD -- Ultra High Definition, 3840 x 2160 ピクセル)を毎秒60フレームで行うことができる。
このシステムは、歩行者を単一のスケールで検出することができる。
その結果,組込み視覚システムのリアルタイム実装において,再プログラム可能なデバイスに高い適合性が確認された。
関連論文リスト
- Benchmarking Jetson Edge Devices with an End-to-end Video-based Anomaly
Detection System [0.0]
監視ビデオから入力されるエンドツーエンドのビデオベース犯罪シーン異常検知システムを実装した。
システムは複数のJetsonエッジデバイス(Nano、AGX Xavier、Orin Nano)で運用されている。
私たちは,さまざまなJetson Edgeデバイスに,AIベースのシステムデプロイメントをDockerテクノロジで実施した経験を提供します。
論文 参考訳(メタデータ) (2023-07-28T17:16:57Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
本稿では,事前定義されたキーアクションを高精度かつ効率的にローカライズするためのトラッキングベースソリューションを提案する。
UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)で優勝した。
論文 参考訳(メタデータ) (2022-04-09T07:52:11Z) - Argus++: Robust Real-time Activity Detection for Unconstrained Video
Streams with Overlapping Cube Proposals [85.76513755331318]
Argus++は、制約のないビデオストリームを分析するための堅牢なリアルタイムアクティビティ検出システムである。
システム全体としては、スタンドアロンのコンシューマレベルのハードウェア上でのリアルタイム処理に最適化されている。
論文 参考訳(メタデータ) (2022-01-14T03:35:22Z) - Parallel Detection for Efficient Video Analytics at the Edge [5.547133811014004]
ディープニューラルネットワーク(DNN)訓練対象検出器は、エッジでのリアルタイムビデオ分析のためにミッションクリティカルシステムに広くデプロイされている。
ミッションクリティカルエッジサービスにおける一般的なパフォーマンス要件は、エッジデバイス上でのオンラインオブジェクト検出のほぼリアルタイムレイテンシである。
本稿では,エッジシステムにおける高速物体検出のためのマルチモデルマルチデバイス検出並列性を利用して,これらの問題に対処する。
論文 参考訳(メタデータ) (2021-07-27T02:50:46Z) - High Performance Hyperspectral Image Classification using Graphics
Processing Units [0.0]
リアルタイムリモートセンシングアプリケーションは、オンボードのリアルタイム処理機能を必要とする。
軽量で小型で低消費電力のハードウェアは、オンボードのリアルタイム処理システムに不可欠である。
論文 参考訳(メタデータ) (2021-05-30T09:26:03Z) - Motion Vector Extrapolation for Video Object Detection [0.0]
MOVEXは、一般的なCPUベースのシステムで低レイテンシのビデオオブジェクト検出を可能にする。
提案手法は,任意の対象検出器のベースライン遅延を著しく低減することを示す。
さらなるレイテンシ低減は、元のレイテンシよりも最大25倍低いもので、最小限の精度で達成できる。
論文 参考訳(メタデータ) (2021-04-18T17:26:37Z) - ACDnet: An action detection network for real-time edge computing based
on flow-guided feature approximation and memory aggregation [8.013823319651395]
ACDnetは、リアルタイムエッジコンピューティングをターゲットとしたコンパクトなアクション検出ネットワークです。
連続するビデオフレーム間の時間的コヒーレンスを利用してCNNの特徴を近似する。
リアルタイム(75FPS)よりはるかに高い精度で検出できる。
論文 参考訳(メタデータ) (2021-02-26T14:06:31Z) - Single Shot Video Object Detector [215.06904478667337]
Single Shot Video Object Detector (SSVD)は、新しいアーキテクチャであり、ビデオ内のオブジェクト検出のための1段階の検出器に機能集約を新規に統合する。
448の448ドルの入力で、SSVDはImageNet VIDデータセットで79.2%のmAPを達成した。
論文 参考訳(メタデータ) (2020-07-07T15:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。