論文の概要: Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
- arxiv url: http://arxiv.org/abs/2308.00008v2
- Date: Tue, 23 Jul 2024 11:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 23:33:02.463343
- Title: Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
- Title(参考訳): 補間スプリット(Interpolation-Split):大容量補間データを用いたデータ中心深層学習による気道セグメンテーション性能の向上
- Authors: Wing Keung Cheung, Ashkan Pakzad, Nesrin Mogulkoc, Sarah Needleman, Bojidar Rangelov, Eyjolfur Gudmundsson, An Zhao, Mariam Abbas, Davina McLaverty, Dimitrios Asimakopoulos, Robert Chapman, Recep Savas, Sam M Janes, Yipeng Hu, Daniel C. Alexander, John R Hurst, Joseph Jacob,
- Abstract要約: 気道のセグメンテーションは 気道全体の輪郭を作るのに 重要な役割を担っています
本研究では,気道木を分割するデータ中心の深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 6.015272528297327
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The morphology and distribution of airway tree abnormalities enables diagnosis and disease characterisation across a variety of chronic respiratory conditions. In this regard, airway segmentation plays a critical role in the production of the outline of the entire airway tree to enable estimation of disease extent and severity. In this study, we propose a data-centric deep learning technique to segment the airway tree. The proposed technique utilises interpolation and image split to improve data usefulness and quality. Then, an ensemble learning strategy is implemented to aggregate the segmented airway trees at different scales. In terms of segmentation performance (dice similarity coefficient), our method outperforms the baseline model by 2.5% on average when a combined loss is used. Further, our proposed technique has a low GPU usage and high flexibility enabling it to be deployed on any 2D deep learning model.
- Abstract(参考訳): 気道木の異常の形態と分布は、様々な慢性呼吸状態の診断と疾患の特徴化を可能にする。
この点において,気道分断は気道全体の輪郭形成において重要な役割を担い,病気の程度と重症度を推定できる。
本研究では,気道木を分割するデータ中心の深層学習手法を提案する。
提案手法は補間と画像分割を利用してデータの有用性と品質を向上させる。
そして、異なる規模でセグメンテーションされた気道木を集約するアンサンブル学習戦略を実行する。
セグメンテーション性能(密接な類似度係数)では, 複合損失を用いた場合, ベースラインモデルの平均2.5%を上回った。
さらに,提案手法はGPU使用率が低く,柔軟性も高く,任意の2次元ディープラーニングモデルにデプロイ可能である。
関連論文リスト
- AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation [0.0]
本研究では,拡張畳み込み残差ネットワークを用いたロバストなアプローチを提案する。
注意に基づく空間特徴拡張ブロック(ASFEB)を搭載し、ガイド付きデコーダ戦略を採用している。
提案したAD-Netの有効性を,4つの公開ベンチマークデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-09-09T08:21:17Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
本研究では,合成画像をよりリアルに見せるために,前景調和フレームワーク(ARHNet)を提案する。
実画像と合成画像を用いたセグメンテーション性能の向上に本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-02T10:39:29Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
深層学習は、内視鏡画像を用いた腎臓結石分類のための奨励的な結果を生み出している。
注釈付きトレーニングデータの不足は、トレーニングされたモデルの性能と一般化能力を改善する上で深刻な問題を引き起こす。
本稿では,セグメンテーションマップを2つの側面から活用することにより,データ不足問題を軽減するためにSegPromptを提案する。
論文 参考訳(メタデータ) (2023-03-15T01:30:48Z) - Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation [34.22415353209505]
気道セグメンテーションの性能を向上させるために, 位相保存距離変換(DTPDT)フレームワークを提案する。
The Topology-Preserved Surrogate (TPS) learning strategy was first proposed to balance the training progress within-class distribution。
The Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the prediction and ground-truth。
論文 参考訳(メタデータ) (2022-09-17T15:47:01Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks [0.0]
胸部CTにおける全自動およびエンドツーエンド最適化気道分割法を提案する。
シンプルで低メモリの3D U-Netをバックボーンとして使用し、大規模な3Dイメージパッチを処理できます。
本手法は誤検出の少ない高度に完全な気道木を抽出できることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:21:02Z) - Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation [1.3750624267664155]
限られたデータで訓練されたネットワークの性能を高めるために,画像のトーン分布の変調と深層学習に基づく手法を提案する。
セグメンテーションタスクは、拡張BCE-IoU損失関数を使用して最適化されたEfficientNet-B0バックボーンを備えたU-Net構成を使用します。
論文 参考訳(メタデータ) (2021-01-26T23:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。