論文の概要: Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks
- arxiv url: http://arxiv.org/abs/2103.16328v1
- Date: Tue, 30 Mar 2021 13:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:39:44.499676
- Title: Automatic airway segmentation from Computed Tomography using robust and
efficient 3-D convolutional neural networks
- Title(参考訳): 頑健で効率的な3次元畳み込みニューラルネットワークを用いたCTによる自動気道セグメンテーション
- Authors: A. Garcia-Uceda Juarez, R. Selvan, Z. Saghir, H.A.W.M. Tiddens, M. de
Bruijne
- Abstract要約: 胸部CTにおける全自動およびエンドツーエンド最適化気道分割法を提案する。
シンプルで低メモリの3D U-Netをバックボーンとして使用し、大規模な3Dイメージパッチを処理できます。
本手法は誤検出の少ない高度に完全な気道木を抽出できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a fully automatic and end-to-end optimised airway
segmentation method for thoracic computed tomography, based on the U-Net
architecture. We use a simple and low-memory 3D U-Net as backbone, which allows
the method to process large 3D image patches, often comprising full lungs, in a
single pass through the network. This makes the method simple, robust and
efficient. We validated the proposed method on three datasets with very
different characteristics and various airway abnormalities: i) a dataset of
pediatric patients including subjects with cystic fibrosis, ii) a subset of the
Danish Lung Cancer Screening Trial, including subjects with chronic obstructive
pulmonary disease, and iii) the EXACT'09 public dataset. We compared our method
with other state-of-the-art airway segmentation methods, including relevant
learning-based methods in the literature evaluated on the EXACT'09 data. We
show that our method can extract highly complete airway trees with few false
positive errors, on scans from both healthy and diseased subjects, and also
that the method generalizes well across different datasets. On the EXACT'09
test set, our method achieved the second highest sensitivity score among all
methods that reported good specificity.
- Abstract(参考訳): 本稿では,U-Netアーキテクチャに基づく胸部CTのための完全自動・エンドツーエンド最適化エアウェイセグメンテーション手法を提案する。
バックボーンとして、単純で低メモリの3D U-Netを使用し、ネットワークを1回のパスで、しばしば肺全体からなる大きな3Dイメージパッチを処理できる。
これにより、メソッドはシンプルでロバストで効率的になる。
提案手法は, 嚢胞性線維症を含む小児患者のデータセット, 慢性閉塞性肺疾患患者を含むデンマーク肺がんスクリーニング試験のサブセット, EXACT'09パブリックデータセットの3つの異なる特徴および気道異常を有する3つのデータセットに対して検証した。
本手法を, EXACT'09データに基づく文献における関連する学習手法を含む,最先端のエアウェイセグメンテーション手法と比較した。
本手法は, 健常者と病人の両方のスキャンにおいて, 誤検出の少ない高度に完全な気道木を抽出でき, また, 異なるデータセットにまたがって十分に一般化できることを示す。
正確な'09試験セットにおいて,本手法は特異性を報告した全手法で2番目に高い感度スコアを得た。
関連論文リスト
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance [6.015272528297327]
気道のセグメンテーションは 気道全体の輪郭を作るのに 重要な役割を担っています
本研究では,気道木を分割するデータ中心の深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T14:51:56Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
提案した3D nnU-Netは,2D法と繰り返しセグメンテーション法よりも優れていることを示す。
実験の結果、十分なトレーニングデータがあれば、3D nnU-Netは日常的な臨床機器の基準を満たす最初の自動化ツールとなる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-03T09:38:52Z) - CT-LungNet: A Deep Learning Framework for Precise Lung Tissue
Segmentation in 3D Thoracic CT Scans [1.1014741301167645]
本稿では,3次元肺CT画像中の肺をディープネットワークと転写学習を用いて同定する完全自動手法を提案する。
VESSEL12とCRPFの2つの公開データセットとトレーニングとテストのために,LUNA16という1つの公開データセットを用いて定量的に評価した。
論文 参考訳(メタデータ) (2022-12-28T17:37:08Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - Automatic CT Segmentation from Bounding Box Annotations using
Convolutional Neural Networks [2.554905387213585]
提案手法は,1)k平均クラスタリングによる境界ボックスアノテーションを用いた擬似マスクの生成,2)分割モデルとして3次元U-Net畳み込みニューラルネットワークを反復的に訓練する。
肝臓、脾臓、腎臓のセグメンテーションでは、それぞれ95.19%、92.11%、91.45%の精度を達成した。
論文 参考訳(メタデータ) (2021-05-29T14:48:16Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。