論文の概要: A 3D deep learning classifier and its explainability when assessing coronary artery disease
- arxiv url: http://arxiv.org/abs/2308.00009v2
- Date: Tue, 26 Nov 2024 19:40:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:22:44.144610
- Title: A 3D deep learning classifier and its explainability when assessing coronary artery disease
- Title(参考訳): 冠動脈疾患評価における3次元ディープラーニング分類器とその説明可能性
- Authors: Wing Keung Cheung, Jeremy Kalindjian, Robert Bell, Arjun Nair, Leon J. Menezes, Riyaz Patel, Simon Wan, Kacy Chou, Jiahang Chen, Ryo Torii, Rhodri H. Davies, James C. Moon, Daniel C. Alexander, Joseph Jacob,
- Abstract要約: 冠動脈疾患の早期発見と診断は、命を救い、医療費を削減できる。
現在のほとんどのアプローチはディープラーニング手法を利用しているが、中心線抽出と多平面再構成が必要である。
提案手法は,最先端モデルの分類精度を21.43%向上させる。
- 参考スコア(独自算出の注目度): 2.749052158388996
- License:
- Abstract: Early detection and diagnosis of coronary artery disease (CAD) could save lives and reduce healthcare costs. The current clinical practice is to perform CAD diagnosis through analysing medical images from computed tomography coronary angiography (CTCA). Most current approaches utilise deep learning methods but require centerline extraction and multi-planar reconstruction. These indirect methods are not designed in a clinician-friendly manner, and they complicate the interventional procedure. Furthermore, the current deep learning methods do not provide exact explainability and limit the usefulness of these methods to be deployed in clinical settings. In this study, we first propose a 3D Resnet-50 deep learning model to directly classify normal subjects and CAD patients on CTCA images, then we demonstrate a 2D modified U-Net model can be subsequently employed to segment the coronary arteries. Our proposed approach outperforms the state-of-the-art models by 21.43% in terms of classification accuracy. The classification model with focal loss provides a better and more focused heat map, and the segmentation model provides better explainability than the classification-only model. The proposed holistic approach not only provides a simpler and clinician-friendly solution but also good classification accuracy and exact explainability for CAD diagnosis.
- Abstract(参考訳): 冠動脈疾患(CAD)の早期発見と診断は、生命を救い、医療費を削減できる。
現在の診療はCTCA(CTCA)から医用画像を分析しCAD診断を行うことである。
現在のほとんどのアプローチはディープラーニング手法を利用しているが、中心線抽出と多平面再構成が必要である。
これらの間接的手法は、クリニックフレンドリーな方法で設計されておらず、介入手順を複雑にしている。
さらに、現在の深層学習法では、正確な説明性を提供しておらず、臨床環境に展開するためのこれらの方法の有用性を制限していない。
本研究ではまず,CTCA画像上で正常者およびCAD患者を直接分類する3次元Resnet-50深層学習モデルを提案する。
提案手法は,最先端モデルの分類精度を21.43%向上させる。
焦点損失のある分類モデルは、より良く、より焦点を絞ったヒートマップを提供し、セグメンテーションモデルは、分類のみのモデルよりもより良い説明可能性を提供する。
提案手法は, よりシンプルでクリニックフレンドリーなソリューションを提供するだけでなく, CAD診断における分類精度と正確な説明性も向上する。
関連論文リスト
- Cross Feature Fusion of Fundus Image and Generated Lesion Map for Referable Diabetic Retinopathy Classification [1.091626241764448]
糖尿病網膜症(DR)は視覚障害の主要な原因であり、早期発見と診断を必要とする。
本研究では,伝達学習と相互注意機構を利用した高度な相互学習DR分類法を開発した。
2つの公開データセットを利用して、我々の実験は94.6%の精度を示し、現在の最先端の手法を4.4%上回った。
論文 参考訳(メタデータ) (2024-11-06T02:23:38Z) - CADICA: a new dataset for coronary artery disease detection by using
invasive coronary angiography [1.5404452377809545]
冠状動脈疾患(CAD)は、今でも世界中で死因となっている。
深層学習分類法は医用画像の他の領域でよく開発されている。
最も重要な理由の1つは、可用性と高品質なオープンアクセスデータセットの欠如である。
論文 参考訳(メタデータ) (2024-02-01T13:03:13Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
冠状動脈構造の複雑さとX線像の固有ノイズが相まって,この課題には大きな課題が生じる。
心血管狭窄セグメンテーションに対する半監督的アプローチを提案する。
自動冠状動脈疾患診断では異常な成績を示した。
論文 参考訳(メタデータ) (2023-11-17T02:01:19Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
そこで本研究では,MICCAI 2023 Automatic Region-based Coronary Artery Disease(冠状動脈疾患自動診断)のためのエンド・ツー・エンドの機械学習ソリューションを提案する。
X線冠動脈造影による冠動脈分画および狭窄性病変の局在性評価の方法の標準化を目的としている。
冠状動脈セグメンテーションでは平均F1スコアが37.69%、狭窄局所化では39.41%であった。
論文 参考訳(メタデータ) (2023-10-27T08:03:12Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
新型コロナウイルス(COVID-19)による肺のCT画像では、地上ガラスの濁度が専門的な診断を必要とする最も一般的な発見である。
一部の研究者は、専門知識の欠如による専門的診断専門医の代替となる、関連するDLモデルを提案する。
肺病変の分類では, 新型コロナウイルス, 肺炎, 正常の3種類で94.52%の精度が得られた。
論文 参考訳(メタデータ) (2022-08-04T22:14:18Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。