論文の概要: NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections by Neural Implicit Representation
- arxiv url: http://arxiv.org/abs/2409.04596v1
- Date: Fri, 6 Sep 2024 20:08:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:42:30.206765
- Title: NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections by Neural Implicit Representation
- Title(参考訳): ニューラルインシシシット表現による2次元プロジェクションからの3次元冠状動脈再建術
- Authors: Yiying Wang, Abhirup Banerjee, Vicente Grau,
- Abstract要約: 2D x線による冠動脈造影は, CVDの診断において最も広く採用されている画像モダリティである。
放射線限界のため、一般的には2つの血管造影プロジェクションのみを取得し、血管形状の限られた情報を提供する。
マルチレゾリューションハッシュエンコーダと差別化可能なコーンビームフォワードプロジェクタ層を用いた暗黙のニューラル表現に基づく,NeCAと呼ばれる自己教師型ディープラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 2.1771042711033997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) are the most common health threats worldwide. 2D x-ray invasive coronary angiography (ICA) remains as the most widely adopted imaging modality for CVDs diagnosis. However, in current clinical practice, it is often difficult for the cardiologists to interpret the 3D geometry of coronary vessels based on 2D planes. Moreover, due to the radiation limit, in general only two angiographic projections are acquired, providing limited information of the vessel geometry and necessitating 3D coronary tree reconstruction based only on two ICA projections. In this paper, we propose a self-supervised deep learning method called NeCA, which is based on implicit neural representation using the multiresolution hash encoder and differentiable cone-beam forward projector layer in order to achieve 3D coronary artery tree reconstruction from two projections. We validate our method using six different metrics on coronary computed tomography angiography data in terms of right coronary artery and left anterior descending respectively. The evaluation results demonstrate that our NeCA method, without 3D ground truth for supervision and large datasets for training, achieves promising performance in both vessel topology preservation and branch-connectivity maintaining compared to the supervised deep learning model.
- Abstract(参考訳): 心臓血管疾患 (CVD) は世界中で最も一般的な健康上の脅威である。
CVDの診断において,2D x-ray invasive coronary angiography (ICA) が最も広く採用されている。
しかし、現在の臨床実践では、心臓科医が冠動脈の3次元形状を二次元平面に基づいて解釈することはしばしば困難である。
さらに, 照射限界のため, 血管形状の限られた情報と2つのICAプロジェクションのみに基づく3D冠状樹再建が必要となる2つの血管造影プロジェクションのみを取得する。
本稿では,2つのプロジェクションから3次元冠状動脈木再構築を実現するために,マルチレゾリューションハッシュエンコーダと異種コーンビーム前方プロジェクター層を用いた暗黙のニューラル表現に基づく,NeCAと呼ばれる自己教師型ディープラーニング手法を提案する。
右冠状動脈,左下行冠状動脈,左下行冠状動脈の6種類の冠動脈造影データを用いて,本法の有効性を検証した。
評価結果から,本手法は3次元地下の真理や訓練用データセットを伴わず,教師付き深層学習モデルと比較して,血管トポロジー保存と分岐接続性維持の両面で有望な性能を達成できることが示唆された。
関連論文リスト
- 3DGR-CAR: Coronary artery reconstruction from ultra-sparse 2D X-ray views with a 3D Gaussians representation [13.829610843207746]
3D冠動脈再建は,冠動脈疾患の診断,治療計画,手術ナビゲーションに重要である。
従来の再建技術は、しばしば多くの投射を必要とするが、スパースビューのX線投射からの再構成は、放射線線量を減らす潜在的方法である。
超スパースX線投影による冠動脈再建のための3次元ガウス表現法である3DGR-CARを提案する。
論文 参考訳(メタデータ) (2024-10-01T05:00:47Z) - Deep Learning-based 3D Coronary Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections [1.9929038355503754]
心臓血管疾患(CVD)は、世界中で最も多い死因である。
CVDの診断において,侵襲的X線冠動脈造影(ICA)は最も重要な画像モダリティの1つである。
ICAは一般的に2Dプロジェクションしか取得しないため、冠動脈の3D形状は解釈が困難である。
本研究では,非定常投射間における非剛性心・呼吸運動の補正のための新しい深層学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-07-19T18:18:17Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - A 3D deep learning classifier and its explainability when assessing
coronary artery disease [2.854890811393726]
提案手法は2次元Resnet-50モデルよりも23.65%優れていた。
本稿では,3次元CAD分類を2次元のセマンティックセマンティックセマンティックセグメンテーションにリンクし,説明可能性の向上と正確な異常位置推定を行う。
論文 参考訳(メタデータ) (2023-07-29T14:54:50Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - 3D Coronary Vessel Reconstruction from Bi-Plane Angiography using Graph
Convolutional Networks [1.8244763402770727]
3DAngioNetは、2つのビューから2D XCA画像を使用して高速な3Dコンテナメッシュ再構築を可能にする、新しいディープラーニング(DL)システムである。
提案手法は,効率的なB3-UNetセグメンテーションネットワークとプロジェクションジオメトリを用いて粗いメッシュテンプレートを学習し,グラフ畳み込みネットワークを用いて変形する。
論文 参考訳(メタデータ) (2023-02-28T17:46:25Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
本稿では,3次元冠状動脈モデル構築のための対角的および生成的手法を提案する。
3D完全教師付き学習法と2D弱教師付き学習法により,最先端技術を上回る再現精度を得た。
論文 参考訳(メタデータ) (2020-03-26T11:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。