Reinforcement Learning for Generative AI: State of the Art,
Opportunities and Open Research Challenges
- URL: http://arxiv.org/abs/2308.00031v4
- Date: Thu, 8 Feb 2024 12:48:23 GMT
- Title: Reinforcement Learning for Generative AI: State of the Art,
Opportunities and Open Research Challenges
- Authors: Giorgio Franceschelli and Mirco Musolesi
- Abstract summary: Reinforcement Learning (RL) has emerged as a very successful paradigm for a variety of machine learning tasks.
We will discuss three types of applications, namely, RL as an alternative way for generation without specified objectives.
We conclude the survey with an in-depth discussion of the opportunities and challenges in this fascinating emerging area.
- Score: 2.9008806248012333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Artificial Intelligence (AI) is one of the most exciting
developments in Computer Science of the last decade. At the same time,
Reinforcement Learning (RL) has emerged as a very successful paradigm for a
variety of machine learning tasks. In this survey, we discuss the state of the
art, opportunities and open research questions in applying RL to generative AI.
In particular, we will discuss three types of applications, namely, RL as an
alternative way for generation without specified objectives; as a way for
generating outputs while concurrently maximizing an objective function; and,
finally, as a way of embedding desired characteristics, which cannot be easily
captured by means of an objective function, into the generative process. We
conclude the survey with an in-depth discussion of the opportunities and
challenges in this fascinating emerging area.
Related papers
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)
Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.
Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
The emergence of Generative Artificial Intelligence (AI) and Large Language Models (LLMs) has marked a new era of Natural Language Processing (NLP)
This paper explores the current state of these cutting-edge technologies, demonstrating their remarkable advancements and wide-ranging applications.
arXiv Detail & Related papers (2024-07-20T18:48:35Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - Reinforcement Learning for Generative AI: A Survey [40.21640713844257]
This survey aims to shed light on a high-level review that spans a range of application areas.
We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications.
We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.
arXiv Detail & Related papers (2023-08-28T06:15:14Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short
Survey [21.311739361361717]
Developmental approaches argue that learning agents must generate, select and learn to solve their own problems.
Recent years have seen a convergence of developmental approaches and deep reinforcement learning (RL) methods, forming the new domain of developmental machine learning.
This paper proposes a typology of these methods at the intersection of deep RL and developmental approaches, surveys recent approaches and discusses future avenues.
arXiv Detail & Related papers (2020-12-17T18:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.