On The Role of Reasoning in the Identification of Subtle Stereotypes in Natural Language
- URL: http://arxiv.org/abs/2308.00071v3
- Date: Sat, 28 Sep 2024 13:43:27 GMT
- Title: On The Role of Reasoning in the Identification of Subtle Stereotypes in Natural Language
- Authors: Jacob-Junqi Tian, Omkar Dige, D. B. Emerson, Faiza Khan Khattak,
- Abstract summary: Large language models (LLMs) are trained on vast, uncurated datasets that contain various forms of biases and language reinforcing harmful stereotypes.
It is essential to examine and address biases in language models, integrating fairness into their development to ensure that these models do not perpetuate social biases.
This work firmly establishes reasoning as a critical component in automatic stereotype detection and is a first step towards stronger stereotype mitigation pipelines for LLMs.
- Score: 0.03749861135832073
- License:
- Abstract: Large language models (LLMs) are trained on vast, uncurated datasets that contain various forms of biases and language reinforcing harmful stereotypes that may be subsequently inherited by the models themselves. Therefore, it is essential to examine and address biases in language models, integrating fairness into their development to ensure that these models do not perpetuate social biases. In this work, we demonstrate the importance of reasoning in zero-shot stereotype identification across several open-source LLMs. Accurate identification of stereotypical language is a complex task requiring a nuanced understanding of social structures, biases, and existing unfair generalizations about particular groups. While improved accuracy is observed through model scaling, the use of reasoning, especially multi-step reasoning, is crucial to consistent performance. Additionally, through a qualitative analysis of select reasoning traces, we highlight how reasoning improves not just accuracy, but also the interpretability of model decisions. This work firmly establishes reasoning as a critical component in automatic stereotype detection and is a first step towards stronger stereotype mitigation pipelines for LLMs.
Related papers
- Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically.
Recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities.
Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning.
arXiv Detail & Related papers (2024-10-07T02:31:47Z) - HEARTS: A Holistic Framework for Explainable, Sustainable and Robust Text Stereotype Detection [0.0]
We introduce HEARTS (Holistic Framework for Explainable, Sustainable, and Robust Text Stereotype Detection), a framework that enhances model performance, minimises carbon footprint, and provides transparent, interpretable explanations.
We establish the Expanded Multi-Grain Stereotype dataset (EMGSD), comprising 57,201 labeled texts across six groups, including under-represented demographics like LGBTQ+ and regional stereotypes.
We then analyse a fine-tuned, carbon-efficient ALBERT-V2 model using SHAP to generate token-level importance values, ensuring alignment with human understanding, and calculate explainability confidence scores by comparing SHAP and LIME
arXiv Detail & Related papers (2024-09-17T22:06:46Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners [58.15511660018742]
This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities.
We develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems.
arXiv Detail & Related papers (2024-06-16T19:22:53Z) - Evaluating Consistency and Reasoning Capabilities of Large Language Models [0.0]
Large Language Models (LLMs) are extensively used today across various sectors, including academia, research, business, and finance.
Despite their widespread adoption, these models often produce incorrect and misleading information, exhibiting a tendency to hallucinate.
This paper aims to evaluate and compare the consistency and reasoning capabilities of both public and proprietary LLMs.
arXiv Detail & Related papers (2024-04-25T10:03:14Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
We evaluate language understanding capacities on simple inference tasks that most humans find trivial.
We target (i) grammatically-specified entailments, (ii) premises with evidential adverbs of uncertainty, and (iii) monotonicity entailments.
The models exhibit moderate to low performance on these evaluation sets.
arXiv Detail & Related papers (2023-05-24T06:41:09Z) - ALERT: Adapting Language Models to Reasoning Tasks [43.8679673685468]
ALERT is a benchmark and suite of analyses for assessing language models' reasoning ability.
ALERT provides a test bed to asses any language model on fine-grained reasoning skills.
We find that language models learn more reasoning skills during finetuning stage compared to pretraining state.
arXiv Detail & Related papers (2022-12-16T05:15:41Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
We evaluate how well language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing.
Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation.
arXiv Detail & Related papers (2021-12-16T05:36:08Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z) - CausaLM: Causal Model Explanation Through Counterfactual Language Models [33.29636213961804]
CausaLM is a framework for producing causal model explanations using counterfactual language representation models.
We show that language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest.
A byproduct of our method is a language representation model that is unaffected by the tested concept.
arXiv Detail & Related papers (2020-05-27T15:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.