論文の概要: Towards Semantically Enriched Embeddings for Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2308.00081v2
- Date: Wed, 2 Aug 2023 07:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 10:11:41.014550
- Title: Towards Semantically Enriched Embeddings for Knowledge Graph Completion
- Title(参考訳): 知識グラフ補完のための意味豊かな埋め込みを目指して
- Authors: Mehwish Alam, Frank van Harmelen, Maribel Acosta
- Abstract要約: 本稿では,KG埋め込み生成のバリエーションに基づいて,既存のKG完了アルゴリズムについて論じる。
その後、KG、LLM内の型情報を利用したアルゴリズムに移行し、最後に、異なる記述論理公理で表されるセマンティクスをキャプチャするアルゴリズムに移行する。
- 参考スコア(独自算出の注目度): 1.2246649738388389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embedding based Knowledge Graph (KG) Completion has gained much attention
over the past few years. Most of the current algorithms consider a KG as a
multidirectional labeled graph and lack the ability to capture the semantics
underlying the schematic information. In a separate development, a vast amount
of information has been captured within the Large Language Models (LLMs) which
has revolutionized the field of Artificial Intelligence. KGs could benefit from
these LLMs and vice versa. This vision paper discusses the existing algorithms
for KG completion based on the variations for generating KG embeddings. It
starts with discussing various KG completion algorithms such as transductive
and inductive link prediction and entity type prediction algorithms. It then
moves on to the algorithms utilizing type information within the KGs, LLMs, and
finally to algorithms capturing the semantics represented in different
description logic axioms. We conclude the paper with a critical reflection on
the current state of work in the community and give recommendations for future
directions.
- Abstract(参考訳): 埋め込みベースの知識グラフ(KG) 完成度はここ数年で大きな注目を集めている。
現在のアルゴリズムの多くは、KGを多方向ラベル付きグラフと見なしており、スキーマ情報に基づくセマンティクスをキャプチャする能力がない。
別の開発では、人工知能の分野に革命をもたらしたLarge Language Models(LLM)内で、膨大な情報が収集されている。
KGはこれらのLCMの恩恵を受けることができる。
本稿では,KG埋め込み生成のバリエーションに基づいて,既存のKG完了アルゴリズムについて述べる。
トランスダクティブおよびインダクティブリンク予測やエンティティタイプ予測アルゴリズムなど、さまざまなkg補完アルゴリズムについて議論することから始まる。
その後、KG、LLM内の型情報を利用したアルゴリズムに移行し、最後に、異なる記述論理公理で表されるセマンティクスをキャプチャするアルゴリズムに移行する。
本稿は、コミュニティにおける現在の作業状況について批判的な考察を行い、今後の方向性について推奨する。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Schema First! Learn Versatile Knowledge Graph Embeddings by Capturing
Semantics with MASCHInE [3.174882428337821]
近年,知識グラフ埋め込みモデル (KGEMs) が注目されている。
本研究では,RDF/S情報を活用するKGの小型改良版であるプロトグラフを設計する。
学習されたプロトグラフベースの埋め込みは、KGのセマンティクスをカプセル化することを目的としており、KGEの学習に利用することができる。
論文 参考訳(メタデータ) (2023-06-06T13:22:54Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z) - MEKER: Memory Efficient Knowledge Embedding Representation for Link
Prediction and Question Answering [65.62309538202771]
知識グラフ(KG)は、事実を象徴的に構造化した記憶装置である。
KG埋め込みには、実世界の暗黙的な情報を必要とするNLPタスクで使用される簡潔なデータが含まれている。
リンク予測タスクとKGに基づく質問応答においてSOTAに比較可能な性能をもたらすメモリ効率のよいKG埋め込みモデルを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:47:03Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
コモンセンス知識グラフ(英: Commonsense Knowledge graph、CKG)は、知識グラフ(英: knowledge graph、CKG)の一種。
本稿では,未確認のエンティティがテスト時に現れるCKG完了のための帰納学習環境について検討する。
InductivEは、ATOMICとConceptNetベンチマークの標準設定とインダクティブ設定の両方において、最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2020-09-19T16:10:26Z) - Knowledge Graphs and Knowledge Networks: The Story in Brief [0.1933681537640272]
知識グラフ(KG)は、実世界のノイズの多い生情報を構造化形式で表現し、エンティティ間の関係をキャプチャする。
ソーシャルネットワーク、レコメンダシステム、計算生物学、関係知識表現といった動的現実世界の応用は、困難な研究課題として浮上している。
この記事では、AIのためのKGの旅を要約する。
論文 参考訳(メタデータ) (2020-03-07T18:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。