Target Search and Navigation in Heterogeneous Robot Systems with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2308.00331v1
- Date: Tue, 1 Aug 2023 07:09:14 GMT
- Title: Target Search and Navigation in Heterogeneous Robot Systems with Deep
Reinforcement Learning
- Authors: Yun Chen, Jiaping Xiao
- Abstract summary: We design a heterogeneous robot system consisting of a UAV and a UGV for search and rescue missions in unknown environments.
The system is able to search for targets and navigate to them in a maze-like mine environment with the policies learned through deep reinforcement learning algorithms.
- Score: 3.3167319223959373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative heterogeneous robot systems can greatly improve the efficiency
of target search and navigation tasks. In this paper, we design a heterogeneous
robot system consisting of a UAV and a UGV for search and rescue missions in
unknown environments. The system is able to search for targets and navigate to
them in a maze-like mine environment with the policies learned through deep
reinforcement learning algorithms. During the training process, if two robots
are trained simultaneously, the rewards related to their collaboration may not
be properly obtained. Hence, we introduce a multi-stage reinforcement learning
framework and a curiosity module to encourage agents to explore unvisited
environments. Experiments in simulation environments show that our framework
can train the heterogeneous robot system to achieve the search and navigation
with unknown target locations while existing baselines may not, and accelerate
the training speed.
Related papers
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
We consider robots with unknown dynamics operating in environments with unknown structure.
Our goal is to synthesize a control policy that maximizes the probability of satisfying an automaton-encoded task.
We propose a novel DRL algorithm, which has the capability to learn control policies at a notably faster rate compared to similar methods.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - Co-NavGPT: Multi-Robot Cooperative Visual Semantic Navigation using
Large Language Models [10.312968200748118]
Co-NavGPT is an innovative framework that integrates Large Language Models as a global planner for multi-robot cooperative visual target navigation.
It encodes the explored environment data into prompts, enhancing LLMs' scene comprehension.
It then assigns exploration frontiers to each robot for efficient target search.
arXiv Detail & Related papers (2023-10-11T23:17:43Z) - Learning Hierarchical Interactive Multi-Object Search for Mobile
Manipulation [10.21450780640562]
We introduce a novel interactive multi-object search task in which a robot has to open doors to navigate rooms and search inside cabinets and drawers to find target objects.
These new challenges require combining manipulation and navigation skills in unexplored environments.
We present HIMOS, a hierarchical reinforcement learning approach that learns to compose exploration, navigation, and manipulation skills.
arXiv Detail & Related papers (2023-07-12T12:25:33Z) - Robot path planning using deep reinforcement learning [0.0]
Reinforcement learning methods offer an alternative to map-free navigation tasks.
Deep reinforcement learning agents are implemented for both the obstacle avoidance and the goal-oriented navigation task.
An analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.
arXiv Detail & Related papers (2023-02-17T20:08:59Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - APPLD: Adaptive Planner Parameter Learning from Demonstration [48.63930323392909]
We introduce APPLD, Adaptive Planner Learning from Demonstration, that allows existing navigation systems to be successfully applied to new complex environments.
APPLD is verified on two robots running different navigation systems in different environments.
Experimental results show that APPLD can outperform navigation systems with the default and expert-tuned parameters, and even the human demonstrator themselves.
arXiv Detail & Related papers (2020-03-31T21:15:16Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.