Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2408.14183v1
- Date: Mon, 26 Aug 2024 11:16:03 GMT
- Title: Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning
- Authors: Yury Kolomeytsev, Dmitry Golembiovsky,
- Abstract summary: We present a novel methodology that enhances the robot's interaction with different types of agents and obstacles.
This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation.
We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient navigation in dynamic environments is crucial for autonomous robots interacting with various environmental entities, including both moving agents and static obstacles. In this study, we present a novel methodology that enhances the robot's interaction with different types of agents and obstacles based on specific safety requirements. This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation. We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles, and additionally encourages the robot's proximity to the goal. It also penalizes the robot for being close to entities, and the safe distance also depends on the entity type. Additionally, we propose an optimized algorithm for training and testing, which significantly accelerates train, validation, and test steps and enables training in complex environments. Comprehensive experiments conducted using simulation demonstrate that our approach consistently outperforms conventional navigation and collision avoidance methods, including state-of-the-art techniques. To sum up, this work contributes to enhancing the safety and efficiency of navigation systems for autonomous robots in dynamic, crowded environments.
Related papers
- HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments [8.974071308749007]
We study the problem of robot navigation in dense and interactive crowds with environmental constraints such as corridors and furniture.
Previous methods fail to consider all types of interactions among agents and obstacles, leading to unsafe and inefficient robot paths.
We propose a structured framework to learn robot navigation policies with reinforcement learning.
arXiv Detail & Related papers (2024-11-19T00:56:35Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
This study investigates the application of deep reinforcement learning to train a mobile robot for autonomous navigation in a complex environment.
The robot utilizes LiDAR sensor data and a deep neural network to generate control signals guiding it toward a specified target while avoiding obstacles.
arXiv Detail & Related papers (2024-05-25T15:08:36Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
Existing safety methods often neglect the robot's ability to learn and adapt at runtime, leading to overly conservative behavior.
This paper proposes a new closed-loop paradigm for synthesizing safe control policies that explicitly account for the robot's evolving uncertainty.
arXiv Detail & Related papers (2023-09-03T20:34:01Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
In reinforcement learning, safety is even more fundamental for exploring an environment without causing any damage.
This paper introduces a new formulation of safe exploration for reinforcement learning of various robotic tasks.
Our approach applies to a wide class of robotic platforms and enforces safety even under complex collision constraints learned from data.
arXiv Detail & Related papers (2022-09-27T11:23:49Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - SERA: Safe and Efficient Reactive Obstacle Avoidance for Collaborative
Robotic Planning in Unstructured Environments [1.5229257192293197]
We propose a novel methodology for reactive whole-body obstacle avoidance.
Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact.
Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.
arXiv Detail & Related papers (2022-03-24T21:11:43Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.