論文の概要: Retrieval Augmented Generation and Representative Vector Summarization
for large unstructured textual data in Medical Education
- arxiv url: http://arxiv.org/abs/2308.00479v1
- Date: Tue, 1 Aug 2023 12:04:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 14:23:06.982361
- Title: Retrieval Augmented Generation and Representative Vector Summarization
for large unstructured textual data in Medical Education
- Title(参考訳): 医学教育における大規模非構造化テキストデータの検索生成と代表ベクトル要約
- Authors: S. S. Manathunga and Y. A. Illangasekara
- Abstract要約: Retrieval Augmented Generation (RAG)は、非パラメトリックなナレッジベースを大規模言語モデルに簡単にアタッチし、操作することができる。
代表ベクトルを用いた大規模非構造化テキストデータの抽出・抽象的要約手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models are increasingly being used for various tasks including
content generation and as chatbots. Despite their impressive performances in
general tasks, LLMs need to be aligned when applying for domain specific tasks
to mitigate the problems of hallucination and producing harmful answers.
Retrieval Augmented Generation (RAG) allows to easily attach and manipulate a
non-parametric knowledgebases to LLMs. Applications of RAG in the field of
medical education are discussed in this paper. A combined extractive and
abstractive summarization method for large unstructured textual data using
representative vectors is proposed.
- Abstract(参考訳): 大規模言語モデルは、コンテンツ生成やチャットボットなど、さまざまなタスクにますます使われています。
一般タスクにおける印象的なパフォーマンスにもかかわらず、LLMは幻覚の問題を和らげ、有害な回答を生み出すために、ドメイン固有のタスクを適用する際に、整列する必要がある。
Retrieval Augmented Generation (RAG) は、非パラメトリックなナレッジベースをLSMに簡単に取り付け、操作することができる。
本稿では医学教育分野におけるRAGの適用について論じる。
代表ベクトルを用いた大規模非構造化テキストデータの抽出・抽象的要約手法を提案する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - Retrieval-Augmented Generation for Natural Language Processing: A Survey [25.11304732038443]
検索強化生成(RAG)は、外部知識データベースを利用して大きな言語モデルを拡張する。
本稿では,RAGの重要技術,特に検索器と検索融合について概説する。
RAGは、自然言語処理のタスクや産業シナリオで使われる。
論文 参考訳(メタデータ) (2024-07-18T06:06:53Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAGは大規模言語モデル(LLM)を強化するために広く採用されている。
分散テキスト生成(ATG)が注目され、RAGにおけるモデルの応答をサポートするための引用を提供する。
本稿では,ReClaim(Refer & Claim)と呼ばれる詳細なATG手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:47:47Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models [10.04914417538886]
大規模言語モデル(LLM)は、様々な言語タスクで顕著な成功を収めてきたが、幻覚や時間的ミスアライメントに悩まされている。
従来のtextitRetrieve-then-Read の代わりに,新しい textitDistill-Retrieve-Read フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-27T13:11:42Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Question-Answering Based Summarization of Electronic Health Records
using Retrieval Augmented Generation [0.0]
本稿では,セマンティック検索,検索拡張生成,質問応答を組み合わせることで,欠点を軽減できる手法を提案する。
我々のアプローチは非常に効率的で、訓練は最小限から不要であり、LLMの「幻覚」問題に苦しむことはない。
要約には繰り返しの内容はなく、特定の質問に対する多様な回答があるため、多様性を保証する。
論文 参考訳(メタデータ) (2024-01-03T00:09:34Z) - Local Large Language Models for Complex Structured Medical Tasks [0.0]
本稿では,大規模言語モデルの言語推論機能と,複雑なドメイン特化タスクに取り組むための局所学習の利点を組み合わせたアプローチを提案する。
具体的には,病理報告から構造化条件コードを抽出し,そのアプローチを実証する。
論文 参考訳(メタデータ) (2023-08-03T12:36:13Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。