Integrated feature analysis for deep learning interpretation and class activation maps
- URL: http://arxiv.org/abs/2407.01142v1
- Date: Mon, 1 Jul 2024 10:10:57 GMT
- Title: Integrated feature analysis for deep learning interpretation and class activation maps
- Authors: Yanli Li, Tahereh Hassanzadeh, Denis P. Shamonin, Monique Reijnierse, Annette H. M. van der Helm-van Mil, Berend C. Stoel,
- Abstract summary: We propose an integrated feature analysis method to look closer into the intermediate features extracted by deep learning models.
This integrated feature analysis could provide information on overfitting, confounders, outliers in datasets.
The method was evaluated by calculating the consistency between the CAMs average class activation levels and the logits of the model.
- Score: 1.5943223374606597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the decisions of deep learning (DL) models is essential for the acceptance of DL to risk-sensitive applications. Although methods, like class activation maps (CAMs), give a glimpse into the black box, they do miss some crucial information, thereby limiting its interpretability and merely providing the considered locations of objects. To provide more insight into the models and the influence of datasets, we propose an integrated feature analysis method, which consists of feature distribution analysis and feature decomposition, to look closer into the intermediate features extracted by DL models. This integrated feature analysis could provide information on overfitting, confounders, outliers in datasets, model redundancies and principal features extracted by the models, and provide distribution information to form a common intensity scale, which are missing in current CAM algorithms. The integrated feature analysis was applied to eight different datasets for general validation: photographs of handwritten digits, two datasets of natural images and five medical datasets, including skin photography, ultrasound, CT, X-rays and MRIs. The method was evaluated by calculating the consistency between the CAMs average class activation levels and the logits of the model. Based on the eight datasets, the correlation coefficients through our method were all very close to 100%, and based on the feature decomposition, 5%-25% of features could generate equally informative saliency maps and obtain the same model performances as using all features. This proves the reliability of the integrated feature analysis. As the proposed methods rely on very few assumptions, this is a step towards better model interpretation and a useful extension to existing CAM algorithms. Codes: https://github.com/YanliLi27/IFA
Related papers
- Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
This paper explores the intersection of Discrete Choice Modeling (DCM) and machine learning.
We investigate the consequences of embedding high-dimensional image data that shares isomorphic information with traditional tabular inputs within a DCM framework.
arXiv Detail & Related papers (2023-12-22T14:33:54Z) - The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
We evaluate seven feature extractor models across three different datasets with 162 different aggregation model configurations.
We find that the performance of many current feature extractor models is notably similar.
arXiv Detail & Related papers (2023-11-29T16:54:25Z) - COSE: A Consistency-Sensitivity Metric for Saliency on Image
Classification [21.3855970055692]
We present a set of metrics that utilize vision priors to assess the performance of saliency methods on image classification tasks.
We show that although saliency methods are thought to be architecture-independent, most methods could better explain transformer-based models over convolutional-based models.
arXiv Detail & Related papers (2023-09-20T01:06:44Z) - Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features [0.47248250311484113]
Class Activation Maps (CAMs) visualizes the importance of each feature of a data sample contributing to the classification.
We aggregate CAMs from multiple samples to show a global explanation of the classification for semantically structured data.
Our approach allows an analyst to detect important features of high-dimensional data and derive adjustments to the AI model based on our global explanation visualization.
arXiv Detail & Related papers (2023-07-29T11:13:11Z) - Domain Generalization via Ensemble Stacking for Face Presentation Attack
Detection [4.61143637299349]
Face Presentation Attack Detection (PAD) plays a pivotal role in securing face recognition systems against spoofing attacks.
This work proposes a comprehensive solution that combines synthetic data generation and deep ensemble learning.
Experimental results on four datasets demonstrate low half total error rates (HTERs) on three benchmark datasets.
arXiv Detail & Related papers (2023-01-05T16:44:36Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data.
MVPA works best with a well-designed feature set and an adequate sample size.
Most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes.
This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning approach.
arXiv Detail & Related papers (2020-10-24T08:50:26Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.