論文の概要: Ada-DQA: Adaptive Diverse Quality-aware Feature Acquisition for Video
Quality Assessment
- arxiv url: http://arxiv.org/abs/2308.00729v1
- Date: Tue, 1 Aug 2023 16:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 14:59:50.857010
- Title: Ada-DQA: Adaptive Diverse Quality-aware Feature Acquisition for Video
Quality Assessment
- Title(参考訳): Ada-DQA:ビデオ品質評価のための適応的横品質認識機能獲得
- Authors: Hongbo Liu, Mingda Wu, Kun Yuan, Ming Sun, Yansong Tang, Chuanchuan
Zheng, Xing Wen, Xiu Li
- Abstract要約: 近年,映像品質評価 (VQA) が注目されている。
大規模VQAデータセットのアノテートに大きな費用が、現在のディープラーニング手法の主な障害となっている。
Ada-DQA(Adaptive Diverse Quality-Aware Feature Acquisition)フレームワークは、望ましい品質関連の特徴を捉えるために提案されている。
- 参考スコア(独自算出の注目度): 25.5501280406614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video quality assessment (VQA) has attracted growing attention in recent
years. While the great expense of annotating large-scale VQA datasets has
become the main obstacle for current deep-learning methods. To surmount the
constraint of insufficient training data, in this paper, we first consider the
complete range of video distribution diversity (\ie content, distortion,
motion) and employ diverse pretrained models (\eg architecture, pretext task,
pre-training dataset) to benefit quality representation. An Adaptive Diverse
Quality-aware feature Acquisition (Ada-DQA) framework is proposed to capture
desired quality-related features generated by these frozen pretrained models.
By leveraging the Quality-aware Acquisition Module (QAM), the framework is able
to extract more essential and relevant features to represent quality. Finally,
the learned quality representation is utilized as supplementary supervisory
information, along with the supervision of the labeled quality score, to guide
the training of a relatively lightweight VQA model in a knowledge distillation
manner, which largely reduces the computational cost during inference.
Experimental results on three mainstream no-reference VQA benchmarks clearly
show the superior performance of Ada-DQA in comparison with current
state-of-the-art approaches without using extra training data of VQA.
- Abstract(参考訳): 近年,ビデオ品質評価(VQA)が注目されている。
大規模なVQAデータセットのアノテートには多大な費用がかかるが、現在のディープラーニング手法の主な障害となっている。
本稿では,不十分なトレーニングデータの制約を克服するために,まず,映像配信の多様性(\ieコンテンツ,歪み,動き)の完全範囲を検討し,品質表現の恩恵を受けるために,多種多様な事前学習モデル(\egアーキテクチャ,プリテキストタスク,プリトレーニングデータセット)を採用する。
Ada-DQA(Adaptive Diverse Quality-Aware Feature Acquisition)フレームワークは、これらの凍結事前学習モデルによって生成される望ましい品質関連特徴を捉えるために提案される。
QAM(Quality-Aware Acquisition Module)を利用することで、フレームワークは品質を表現するためにより不可欠で関連する機能を抽出することができる。
最後に、学習された品質表現を、ラベル付き品質スコアの監督とともに補助的な監視情報として利用し、知識蒸留方式で比較的軽量なVQAモデルのトレーニングを指導し、推論時の計算コストを大幅に削減する。
3つの主流ノン参照VQAベンチマークの実験結果から,VQAの余分なトレーニングデータを用いることなく,現在の最先端アプローチと比較して,Ada-DQAの優れた性能を示した。
関連論文リスト
- VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
ビデオ品質アセスメント(VQA)は、低レベルの視覚知覚において古典的な分野である。
画像領域における最近の研究は、視覚質問応答(VQA)が視覚的品質を著しく低レベルに評価できることを示した。
VQA2インストラクションデータセットは,ビデオ品質評価に焦点をあてた最初の視覚的質問応答インストラクションデータセットである。
VQA2シリーズは、ビデオにおける空間的時間的品質の詳細の知覚を高めるために、視覚的および運動的トークンをインターリーブする。
論文 参考訳(メタデータ) (2024-11-06T09:39:52Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
Q-Groundは、大規模な視覚的品質グラウンドに取り組むための最初のフレームワークである。
Q-Groundは、大規模なマルチモダリティモデルと詳細な視覚的品質分析を組み合わせる。
コントリビューションの中心は、QGround-100Kデータセットの導入です。
論文 参考訳(メタデータ) (2024-07-24T06:42:46Z) - PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild [27.195339506769457]
映像品質評価(VQA)は、映像の知覚品質に影響を与える多くの要因により難しい問題である。
ビデオに対する平均評価スコア(MOS)の注釈付けは高価で時間を要するため、VQAデータセットのスケールが制限される。
PTM-VQAと呼ばれるVQA手法を提案し、PreTrained Modelsを利用して、様々な事前タスクで事前訓練されたモデルから知識を伝達する。
論文 参考訳(メタデータ) (2024-05-28T02:37:29Z) - Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
ソーシャルメディアビデオの視覚的品質評価(BVQA)モデルを改善するための,シンプルだが効果的な手法を提案する。
本稿では,BIQAモデルとBVQAモデルを用いて,事前学習したブラインド画像品質評価(BIQA)から,リッチな品質認識機能について検討する。
実験により,提案モデルが3つのソーシャルメディアVQAデータセット上で最高の性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-14T16:32:11Z) - Analysis of Video Quality Datasets via Design of Minimalistic Video Quality Models [71.06007696593704]
BVQA(Blind Quality Assessment)は、実世界のビデオ対応メディアアプリケーションにおけるエンドユーザの視聴体験の監視と改善に不可欠である。
実験分野として、BVQAモデルの改良は、主に数個の人間の評価されたVQAデータセットに基づいて測定されている。
最小主義的BVQAモデルを用いて,VQAデータセットの第一種計算解析を行う。
論文 参考訳(メタデータ) (2023-07-26T06:38:33Z) - Study on the Assessment of the Quality of Experience of Streaming Video [117.44028458220427]
本稿では,ストリーミング映像のQoEの主観的推定に対する様々な客観的要因の影響について検討する。
本論文では標準的および手作り的特徴を示し,その相関とp値を示す。
SQoE-IIIデータベースは、これまでで最大の、そして最も現実的なデータベースだ。
論文 参考訳(メタデータ) (2020-12-08T18:46:09Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
コンテンツの品質劣化は予測不能で、複雑で、しばしば開始されるため、Wild動画のブラインド品質の予測は非常に難しい。
ここでは、主要なVQAモデルの包括的評価を行うことにより、この問題の進展に寄与する。
先行するVQAモデルの特徴の上に特徴選択戦略を適用することで,先行するモデルが使用する統計的特徴のうち60点を抽出することができる。
我々の実験結果から,VIDEVALは,他の先行モデルよりも計算コストがかなり低く,最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-29T00:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。