論文の概要: Mapping Computer Science Research: Trends, Influences, and Predictions
- arxiv url: http://arxiv.org/abs/2308.00733v1
- Date: Tue, 1 Aug 2023 16:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 15:00:09.062088
- Title: Mapping Computer Science Research: Trends, Influences, and Predictions
- Title(参考訳): コンピュータサイエンス研究のマッピング:トレンド、影響、予測
- Authors: Mohammed Almutairi and Ozioma Collins Oguine
- Abstract要約: 我々は、トレンド研究領域を予測するために、決定木やロジスティック回帰モデルを含む高度な機械学習技術を採用している。
分析の結果,研究論文(参照数)に引用される参考資料の数は,トレンド研究領域を決定する上で重要な役割を担っていることが明らかとなった。
ロジスティック回帰モデルは、傾向を予測するために決定木モデルより優れ、高い精度、精度、リコール、F1スコアを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper explores the current trending research areas in the field of
Computer Science (CS) and investigates the factors contributing to their
emergence. Leveraging a comprehensive dataset comprising papers, citations, and
funding information, we employ advanced machine learning techniques, including
Decision Tree and Logistic Regression models, to predict trending research
areas. Our analysis reveals that the number of references cited in research
papers (Reference Count) plays a pivotal role in determining trending research
areas making reference counts the most relevant factor that drives trend in the
CS field. Additionally, the influence of NSF grants and patents on trending
topics has increased over time. The Logistic Regression model outperforms the
Decision Tree model in predicting trends, exhibiting higher accuracy,
precision, recall, and F1 score. By surpassing a random guess baseline, our
data-driven approach demonstrates higher accuracy and efficacy in identifying
trending research areas. The results offer valuable insights into the trending
research areas, providing researchers and institutions with a data-driven
foundation for decision-making and future research direction.
- Abstract(参考訳): 本稿では,コンピュータ科学(cs)分野における最近のトレンド研究領域を考察し,その出現に寄与する要因について考察する。
論文,引用,資金調達情報からなる包括的データセットを活用し,意思決定木やロジスティック回帰モデルなどの高度な機械学習技術を用いて,トレンド研究領域の予測を行う。
分析の結果,研究論文に引用される参照数(参照数)は,参照数をcs分野で最も関連性の高い要因とするトレンド研究分野を決定する上で重要な役割を担っていることが明らかとなった。
さらに、NSFの助成金や特許がトレンドトピックに与える影響は、時間とともに増加している。
ロジスティック回帰モデルは、傾向を予測するために決定木モデルより優れ、高い精度、精度、リコール、F1スコアを示す。
ランダムな推定基準を超えることによって、我々のデータ駆動型アプローチは、トレンド研究領域を特定するための精度と有効性を示す。
結果は、トレンド研究分野に対する貴重な洞察を提供し、研究者や機関に意思決定と今後の研究方向性のためのデータ駆動基盤を提供する。
関連論文リスト
- Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - The Compute Divide in Machine Learning: A Threat to Academic
Contribution and Scrutiny? [1.0985060632689174]
計算の偏差は、計算集約的な研究トピックにおける学術のみの研究チームの表現の減少と一致していることを示す。
この傾向から生じる課題に対処するため、留意的に学術的な洞察を広めるためのアプローチを推奨する。
論文 参考訳(メタデータ) (2024-01-04T01:26:11Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
本稿では、因果発見と推論技術を用いて、科学分野における研究トピックの進化を分析するための体系的な枠組みを提案する。
我々は3つの変数を定義し、NLPにおける研究トピックの進化の多様な側面を包含する。
我々は因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
論文 参考訳(メタデータ) (2023-05-22T11:08:00Z) - Citation Trajectory Prediction via Publication Influence Representation
Using Temporal Knowledge Graph [52.07771598974385]
既存のアプローチは主に学術論文の時間的データとグラフデータのマイニングに依存している。
本フレームワークは,差分保存グラフ埋め込み,きめ細かい影響表現,学習に基づく軌道計算という3つのモジュールから構成される。
APSアカデミックデータセットとAIPatentデータセットの両方で実験を行った。
論文 参考訳(メタデータ) (2022-10-02T07:43:26Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Research topic trend prediction of scientific papers based on spatial
enhancement and dynamic graph convolution network [6.73620879761516]
近年,科学研究への社会投資の増加に伴い,様々な分野の研究成果が著しく増加している。
様々な研究テーマ間の相関関係がますます高まっているため、多数の研究テーマの間には一定の依存関係関係がある。
本稿では,ディープニューラルネットワークに基づくホットネス予測アルゴリズム,時間畳み込みネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-03-30T12:38:52Z) - Click-Through Rate Prediction in Online Advertising: A Literature Review [0.0]
我々は,最新のCTR予測研究について,系統的な文献レビューを行っている。
現代文献における最先端CTR予測モデルの分類について述べる。
我々は、現在の研究動向、主な課題、今後の今後の展望を、さらなる探査にふさわしいものとみなす。
論文 参考訳(メタデータ) (2022-02-22T01:05:38Z) - Identifying Causal Influences on Publication Trends and Behavior: A Case
Study of the Computational Linguistics Community [10.791197825505755]
本稿では,出版傾向と行動の因果的影響を明らかにするための混合手法分析について述べる。
主要な発見は、研究コミュニティにおける急速に発展する方法論への移行を浮き彫りにしている。
我々はこの研究が出版トレンドや行動に関する有用な洞察を提供することを期待している。
論文 参考訳(メタデータ) (2021-10-15T08:36:13Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。