Regular Variation in Hilbert Spaces and Principal Component Analysis for
Functional Extremes
- URL: http://arxiv.org/abs/2308.01023v1
- Date: Wed, 2 Aug 2023 09:12:03 GMT
- Title: Regular Variation in Hilbert Spaces and Principal Component Analysis for
Functional Extremes
- Authors: Stephan Cl\'emen\c{c}on, Nathan Huet, Anne Sabourin
- Abstract summary: We place ourselves in a Peaks-Over-Threshold framework where a functional extreme is defined as an observation $X$ whose $L2$-norm $|X|$ is comparatively large.
Our goal is to propose a dimension reduction framework resulting into finite dimensional projections for such extreme observations.
- Score: 1.6734018640023431
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the increasing availability of data of functional nature, we
develop a general probabilistic and statistical framework for extremes of
regularly varying random elements $X$ in $L^2[0,1]$. We place ourselves in a
Peaks-Over-Threshold framework where a functional extreme is defined as an
observation $X$ whose $L^2$-norm $\|X\|$ is comparatively large. Our goal is to
propose a dimension reduction framework resulting into finite dimensional
projections for such extreme observations. Our contribution is double. First,
we investigate the notion of Regular Variation for random quantities valued in
a general separable Hilbert space, for which we propose a novel concrete
characterization involving solely stochastic convergence of real-valued random
variables. Second, we propose a notion of functional Principal Component
Analysis (PCA) accounting for the principal `directions' of functional
extremes. We investigate the statistical properties of the empirical covariance
operator of the angular component of extreme functions, by upper-bounding the
Hilbert-Schmidt norm of the estimation error for finite sample sizes. Numerical
experiments with simulated and real data illustrate this work.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications [2.0584253077707477]
We study the convergence properties of the Gradient Descent (SGD) method for finding a stationary point of an objective function $J(cdot)$.
Our results apply to a class of invex'' functions, which have the property that every stationary point is also a global minimizer.
arXiv Detail & Related papers (2023-12-05T15:22:39Z) - Universal coding, intrinsic volumes, and metric complexity [3.4392739159262145]
We study the sequential probability assignment in the Gaussian setting, where the goal is to predict, or equivalently, a sequence of real-valued observations.
As part of our analysis, we also describe the minimax for a general set. We finally relate our findings with classical results in information theory.
arXiv Detail & Related papers (2023-03-13T16:54:04Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
We study the $p$-generalized probit regression model, which is a generalized linear model for binary responses.
We show how the maximum likelihood estimator for $p$-generalized probit regression can be approximated efficiently up to a factor of $(1+varepsilon)$ on large data.
arXiv Detail & Related papers (2022-03-25T10:54:41Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
We investigate the approximation of the $L2$-operator defined by $[Pf](x) := mathbbE[ f(Y) mid X = x ]$ under minimal assumptions.
We prove that $P$ can be arbitrarily well approximated in operator norm by Hilbert-Schmidt operators acting on a reproducing kernel space.
arXiv Detail & Related papers (2020-12-23T19:06:12Z) - Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models [0.951828574518325]
We show the rate-optimal upper and lower bounds of the prediction error.
An exact upper bound for the excess prediction risk is shown in a non-asymptotic form.
We derive the non-asymptotic minimax lower bound under the regularity assumption of the Kullback-Leibler divergence of the models.
arXiv Detail & Related papers (2020-09-10T08:49:32Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.