Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models
- URL: http://arxiv.org/abs/2009.04729v3
- Date: Fri, 30 Sep 2022 01:45:44 GMT
- Title: Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models
- Authors: Huiming Zhang, Xiaoyu Lei
- Abstract summary: We show the rate-optimal upper and lower bounds of the prediction error.
An exact upper bound for the excess prediction risk is shown in a non-asymptotic form.
We derive the non-asymptotic minimax lower bound under the regularity assumption of the Kullback-Leibler divergence of the models.
- Score: 0.951828574518325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Under the reproducing kernel Hilbert spaces (RKHS), we consider the penalized
least-squares of the partially functional linear models (PFLM), whose predictor
contains both functional and traditional multivariate parts, and the
multivariate part allows a divergent number of parameters. From the
non-asymptotic point of view, we focus on the rate-optimal upper and lower
bounds of the prediction error. An exact upper bound for the excess prediction
risk is shown in a non-asymptotic form under a more general assumption known as
the effective dimension to the model, by which we also show the prediction
consistency when the number of multivariate covariates $p$ slightly increases
with the sample size $n$. Our new finding implies a trade-off between the
number of non-functional predictors and the effective dimension of the kernel
principal components to ensure prediction consistency in the
increasing-dimensional setting. The analysis in our proof hinges on the
spectral condition of the sandwich operator of the covariance operator and the
reproducing kernel, and on sub-Gaussian and Berstein concentration inequalities
for the random elements in Hilbert space. Finally, we derive the non-asymptotic
minimax lower bound under the regularity assumption of the Kullback-Leibler
divergence of the models.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
The problem of estimating a linear functional based on observational data is canonical in both the causal inference and bandit literatures.
We prove non-asymptotic upper bounds on the mean-squared error of such procedures.
We establish its instance-dependent optimality in finite samples via matching non-asymptotic local minimax lower bounds.
arXiv Detail & Related papers (2022-09-26T23:50:55Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
We develop a general framework for risk monotonization based on cross-validation.
We propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting.
arXiv Detail & Related papers (2022-05-25T17:41:40Z) - Neural Estimation of Statistical Divergences [24.78742908726579]
A modern method for estimating statistical divergences relies on parametrizing an empirical variational form by a neural network (NN)
In particular, there is a fundamental tradeoff between the two sources of error involved: approximation and empirical estimation.
We show that neural estimators with a slightly different NN growth-rate are near minimax rate-optimal, achieving the parametric convergence rate up to logarithmic factors.
arXiv Detail & Related papers (2021-10-07T17:42:44Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Signatures of Chaos in Non-integrable Models of Quantum Field Theory [0.0]
We study signatures of quantum chaos in (1+1)D Quantum Field Theory (QFT) models.
We focus on the double sine-Gordon, also studying the massive sine-Gordon and $phi4$ model.
arXiv Detail & Related papers (2020-12-15T18:56:20Z) - Sparse Representations of Positive Functions via First and Second-Order
Pseudo-Mirror Descent [15.340540198612823]
We consider expected risk problems when the range of the estimator is required to be nonnegative.
We develop first and second-order variants of approximation mirror descent employing emphpseudo-gradients.
Experiments demonstrate favorable performance on ingeneous Process intensity estimation in practice.
arXiv Detail & Related papers (2020-11-13T21:54:28Z) - Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in
High Dimensions [41.7567932118769]
Empirical Risk Minimization algorithms are widely used in a variety of estimation and prediction tasks.
In this paper, we characterize for the first time the fundamental limits on the statistical accuracy of convex ERM for inference.
arXiv Detail & Related papers (2020-06-16T04:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.