論文の概要: Graph Anomaly Detection at Group Level: A Topology Pattern Enhanced
Unsupervised Approach
- arxiv url: http://arxiv.org/abs/2308.01063v1
- Date: Wed, 2 Aug 2023 10:22:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 13:21:28.998708
- Title: Graph Anomaly Detection at Group Level: A Topology Pattern Enhanced
Unsupervised Approach
- Title(参考訳): グループレベルでのグラフ異常検出:トポロジーパターンによる教師なしアプローチ
- Authors: Xing Ai, Jialong Zhou, Yulin Zhu, Gaolei Li, Tomasz P. Michalak, Xiapu
Luo, Kai Zhou
- Abstract要約: 本稿では,グループレベルグラフ異常検出(Gr-GAD)と呼ばれる新しいタスクのための教師なしフレームワークを提案する。
提案フレームワークはまず,長距離不整合を捕捉して潜在的な異常グループに属するアンカーノードを特定するために,グラフオートエンコーダ(GAE)の変種を用いる。
実世界のデータセットと合成データセットの両方の実験結果から,提案フレームワークは異常群を同定および局所化する上で優れた性能を示すことが示された。
- 参考スコア(独自算出の注目度): 25.383587951822964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph anomaly detection (GAD) has achieved success and has been widely
applied in various domains, such as fraud detection, cybersecurity, finance
security, and biochemistry. However, existing graph anomaly detection
algorithms focus on distinguishing individual entities (nodes or graphs) and
overlook the possibility of anomalous groups within the graph. To address this
limitation, this paper introduces a novel unsupervised framework for a new task
called Group-level Graph Anomaly Detection (Gr-GAD). The proposed framework
first employs a variant of Graph AutoEncoder (GAE) to locate anchor nodes that
belong to potential anomaly groups by capturing long-range inconsistencies.
Subsequently, group sampling is employed to sample candidate groups, which are
then fed into the proposed Topology Pattern-based Graph Contrastive Learning
(TPGCL) method. TPGCL utilizes the topology patterns of groups as clues to
generate embeddings for each candidate group and thus distinct anomaly groups.
The experimental results on both real-world and synthetic datasets demonstrate
that the proposed framework shows superior performance in identifying and
localizing anomaly groups, highlighting it as a promising solution for Gr-GAD.
Datasets and codes of the proposed framework are at the github repository
https://anonymous.4open.science/r/Topology-Pattern-Enhanced-Unsupervised-Group-level-Graph-Anomaly-D etection.
- Abstract(参考訳): グラフ異常検出(gad)は成功し、不正検出、サイバーセキュリティ、金融セキュリティ、生化学など様々な分野に広く適用されている。
しかし、既存のグラフ異常検出アルゴリズムは個々のエンティティ(ノードやグラフ)の識別に重点を置いており、グラフ内の異常なグループの可能性を見落としている。
本稿では,グループレベルグラフ異常検出(Gr-GAD)と呼ばれる新しいタスクのための,教師なしフレームワークを提案する。
提案フレームワークはまず,長距離不整合を捕捉して潜在的な異常グループに属するアンカーノードを特定するために,グラフオートエンコーダ(GAE)の変種を用いる。
その後、グループサンプリングをサンプル候補グループに適用し、提案したTopology Pattern-based Graph Contrastive Learning(TPGCL)手法に入力する。
tpgclはグループのトポロジーパターンを手がかりとして、それぞれの候補群と異なる異常群への埋め込みを生成する。
実世界のデータセットと合成データセットの両方の実験結果から,提案フレームワークは異常群を同定および局所化する上で優れた性能を示し,Gr-GADの有望な解であることが示された。
提案されたフレームワークのデータセットとコードはgithubリポジトリhttps://anonymous.4open.science/r/Topology-Pattern-Enhanced-Unsupervised-Group-Anomaly-Detectionにある。
関連論文リスト
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction [36.56631787651942]
グラフオートエンコーダ(GAE)はグラフデータをノード表現にエンコードし、これらの表現に基づいてグラフの再構成品質を評価することで異常を識別する。
グラフ異常検出のための近傍再構成を組み込んだ新しいGAEであるGAD-NRを提案する。
6つの実世界のデータセットで実施された大規模な実験は、GAD-NRの有効性を検証し、最先端の競合相手よりも顕著な改善(AUCでは最大30%)を示す。
論文 参考訳(メタデータ) (2023-06-02T23:23:34Z) - GADformer: A Transparent Transformer Model for Group Anomaly Detection on Trajectories [0.9971221656644376]
グループ異常検出(GAD)は、個々のメンバーが異常ではない場合の異常なパターンを特定する。
本稿では,非教師付きおよび半教師付き設定におけるトラジェクトリ上での注意駆動型GADモデルであるGADformerを紹介する。
また,Block-Attention-anomaly-Score (BAS)を導入し,注意パターンを評価することでモデルの透明性を高める。
論文 参考訳(メタデータ) (2023-03-17T08:49:09Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
サブ構造認識(ARISE)による属性付きネットワーク上の新しいグラフ異常検出フレームワークを提案する。
ARISEは、異常を識別するグラフのサブ構造に焦点を当てている。
実験により、ARISEは最先端の属性付きネットワーク異常検出(ANAD)アルゴリズムと比較して、検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-28T12:17:40Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
本稿では,グラフレベルのクラスタリングの問題について検討する。
GLCC(Graph-Level Contrastive Clustering)というグラフレベルの一般的なクラスタリングフレームワークを提案する。
様々なよく知られたデータセットに対する実験は、競合するベースラインよりも提案したGLCCの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:08:10Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。