Leveraging Few-Shot Data Augmentation and Waterfall Prompting for
Response Generation
- URL: http://arxiv.org/abs/2308.01080v1
- Date: Wed, 2 Aug 2023 11:04:27 GMT
- Title: Leveraging Few-Shot Data Augmentation and Waterfall Prompting for
Response Generation
- Authors: Lea Krause, Selene B\'aez Santamar\'ia, Michiel van der Meer, Urja
Khurana
- Abstract summary: This paper discusses our approaches for task-oriented conversational modelling using subjective knowledge.
Our methodology was shaped by an extensive data analysis that evaluated key factors such as response length, sentiment, and dialogue acts present in the provided dataset.
We present three approaches for DSTC11: (1) task-specific model exploration, (2) incorporation of the most frequent question into all generated responses, and (3) a waterfall prompting technique using a combination of both GPT-3 and ChatGPT.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper discusses our approaches for task-oriented conversational
modelling using subjective knowledge, with a particular emphasis on response
generation. Our methodology was shaped by an extensive data analysis that
evaluated key factors such as response length, sentiment, and dialogue acts
present in the provided dataset. We used few-shot learning to augment the data
with newly generated subjective knowledge items and present three approaches
for DSTC11: (1) task-specific model exploration, (2) incorporation of the most
frequent question into all generated responses, and (3) a waterfall prompting
technique using a combination of both GPT-3 and ChatGPT.
Related papers
- Retrieval-Augmented Neural Response Generation Using Logical Reasoning
and Relevance Scoring [2.3590037806133024]
This paper presents a novel approach to knowledge-grounded response generation.
It combines retrieval-augmented language models with logical reasoning.
Experimental results show that the combination of (probabilistic) logical reasoning with conversational relevance scoring does increase both the factuality and fluency of the responses.
arXiv Detail & Related papers (2023-10-20T15:05:18Z) - InstructERC: Reforming Emotion Recognition in Conversation with Multi-task Retrieval-Augmented Large Language Models [9.611864685207056]
We propose a novel approach, InstructERC, to reformulate the emotion recognition task from a discriminative framework to a generative framework based on Large Language Models (LLMs)
InstructERC makes three significant contributions: (1) it introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information; (2) we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations; and (3) Pioneeringly, we unify emotion labels across benchmarks through the feeling wheel to fit real application scenarios.
arXiv Detail & Related papers (2023-09-21T09:22:07Z) - Promoting Open-domain Dialogue Generation through Learning Pattern
Information between Contexts and Responses [5.936682548344234]
This paper improves the quality of generated responses by learning the implicit pattern information between contexts and responses in the training samples.
We also design a response-aware mechanism for mining the implicit pattern information between contexts and responses so that the generated replies are more diverse and approximate to human replies.
arXiv Detail & Related papers (2023-09-06T08:11:39Z) - Diverse and Faithful Knowledge-Grounded Dialogue Generation via
Sequential Posterior Inference [82.28542500317445]
We present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues.
Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution.
arXiv Detail & Related papers (2023-06-01T21:23:13Z) - What should I Ask: A Knowledge-driven Approach for Follow-up Questions
Generation in Conversational Surveys [63.51903260461746]
We propose a novel task for knowledge-driven follow-up question generation in conversational surveys.
We constructed a new human-annotated dataset of human-written follow-up questions with dialogue history and labeled knowledge.
We then propose a two-staged knowledge-driven model for the task, which generates informative and coherent follow-up questions.
arXiv Detail & Related papers (2022-05-23T00:57:33Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
We propose a new method to extract data with silver labels from raw text to finetune a model for stance classification.
We also propose a 3-stage training framework where the noisy level in the data used for finetuning decreases over different stages.
Our approach ranks 1st among 26 competing teams in the stance classification track of the NLPCC 2021 shared task Argumentative Text Understanding for AI Debater.
arXiv Detail & Related papers (2022-04-27T04:24:35Z) - Adapting Document-Grounded Dialog Systems to Spoken Conversations using
Data Augmentation and a Noisy Channel Model [46.93744191416991]
This paper summarizes our submission to Task 2 of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations"
Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response.
Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge.
arXiv Detail & Related papers (2021-12-16T12:51:52Z) - A Template-guided Hybrid Pointer Network for
Knowledge-basedTask-oriented Dialogue Systems [15.654119998970499]
We propose a template-guided hybrid pointer network for the knowledge-based task-oriented dialogue system.
We design a memory pointer network model with a gating mechanism to fully exploit the semantic correlation between the retrieved answers and the ground-truth response.
arXiv Detail & Related papers (2021-06-10T15:49:26Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.