Leveraging Expert Models for Training Deep Neural Networks in Scarce
Data Domains: Application to Offline Handwritten Signature Verification
- URL: http://arxiv.org/abs/2308.01136v1
- Date: Wed, 2 Aug 2023 13:28:12 GMT
- Title: Leveraging Expert Models for Training Deep Neural Networks in Scarce
Data Domains: Application to Offline Handwritten Signature Verification
- Authors: Dimitrios Tsourounis, Ilias Theodorakopoulos, Elias N. Zois and George
Economou
- Abstract summary: The presented scheme is applied in offline handwritten signature verification (OffSV)
The proposed Student-Teacher (S-T) configuration utilizes feature-based knowledge distillation (FKD)
Remarkably, the models trained using this technique exhibit comparable, if not superior, performance to the teacher model across three popular signature datasets.
- Score: 15.88604823470663
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach to leverage the knowledge of existing
expert models for training new Convolutional Neural Networks, on domains where
task-specific data are limited or unavailable. The presented scheme is applied
in offline handwritten signature verification (OffSV) which, akin to other
biometric applications, suffers from inherent data limitations due to
regulatory restrictions. The proposed Student-Teacher (S-T) configuration
utilizes feature-based knowledge distillation (FKD), combining graph-based
similarity for local activations with global similarity measures to supervise
student's training, using only handwritten text data. Remarkably, the models
trained using this technique exhibit comparable, if not superior, performance
to the teacher model across three popular signature datasets. More importantly,
these results are attained without employing any signatures during the feature
extraction training process. This study demonstrates the efficacy of leveraging
existing expert models to overcome data scarcity challenges in OffSV and
potentially other related domains.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Self-Regulated Data-Free Knowledge Amalgamation for Text Classification [9.169836450935724]
We develop a lightweight student network that can learn from multiple teacher models without accessing their original training data.
To accomplish this, we propose STRATANET, a modeling framework that produces text data tailored to each teacher.
We evaluate our method on three benchmark text classification datasets with varying labels or domains.
arXiv Detail & Related papers (2024-06-16T21:13:30Z) - Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
We propose the novel Part of Stroke Masking (POSM) as a pretext task for pretraining models to extract informative representations from the online handwriting of individuals in English and Chinese languages.
To evaluate the quality of the extracted representations, we use both intrinsic and extrinsic evaluation methods.
The pretrained models are fine-tuned to achieve state-of-the-art results in tasks such as writer identification, gender classification, and handedness classification.
arXiv Detail & Related papers (2023-10-10T14:07:49Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
Graph embeddings are susceptible to attribute inference attacks, which allow attackers to infer private node attributes from the learned graph embeddings.
To address these concerns, privacy-preserving graph embedding methods have emerged.
We propose a novel approach called Private Variational Graph AutoEncoders (PVGAE) with the aid of independent distribution penalty as a regularization term.
arXiv Detail & Related papers (2023-08-16T13:32:43Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
We propose a method to learn to augment for data-scarce domain BERT knowledge distillation.
We show that the proposed method significantly outperforms state-of-the-art baselines on four different tasks.
arXiv Detail & Related papers (2021-01-20T13:07:39Z) - Pseudo-Representation Labeling Semi-Supervised Learning [0.0]
In recent years, semi-supervised learning has shown tremendous success in leveraging unlabeled data to improve the performance of deep learning models.
This work proposes the pseudo-representation labeling, a simple and flexible framework that utilizes pseudo-labeling techniques to iteratively label a small amount of unlabeled data and use them as training data.
Compared with the existing approaches, the pseudo-representation labeling is more intuitive and can effectively solve practical problems in the real world.
arXiv Detail & Related papers (2020-05-31T03:55:41Z) - Transfer Learning for Information Extraction with Limited Data [2.201264358342234]
This paper presents a practical approach to fine-grained information extraction.
We first exploit BERT to deal with the limitation of training data in real scenarios.
We then stack BERT with Convolutional Neural Networks to learn hidden representation for classification.
arXiv Detail & Related papers (2020-03-06T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.