論文の概要: UCDFormer: Unsupervised Change Detection Using a Transformer-driven
Image Translation
- arxiv url: http://arxiv.org/abs/2308.01146v1
- Date: Wed, 2 Aug 2023 13:39:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 12:51:22.288141
- Title: UCDFormer: Unsupervised Change Detection Using a Transformer-driven
Image Translation
- Title(参考訳): ucdformer: トランスフォーマティブ画像変換を用いた教師なし変更検出
- Authors: Qingsong Xu, Yilei Shi, Jianhua Guo, Chaojun Ouyang, Xiao Xiang Zhu
- Abstract要約: 両時間画像の比較による変化検出(CD)は,リモートセンシングにおいて重要な課題である。
リモートセンシング画像に対する領域シフト設定による変更検出を提案する。
UCDFormerと呼ばれる軽量トランスを用いた新しい教師なしCD方式を提案する。
- 参考スコア(独自算出の注目度): 20.131754484570454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection (CD) by comparing two bi-temporal images is a crucial task
in remote sensing. With the advantages of requiring no cumbersome labeled
change information, unsupervised CD has attracted extensive attention in the
community. However, existing unsupervised CD approaches rarely consider the
seasonal and style differences incurred by the illumination and atmospheric
conditions in multi-temporal images. To this end, we propose a change detection
with domain shift setting for remote sensing images. Furthermore, we present a
novel unsupervised CD method using a light-weight transformer, called
UCDFormer. Specifically, a transformer-driven image translation composed of a
light-weight transformer and a domain-specific affinity weight is first
proposed to mitigate domain shift between two images with real-time efficiency.
After image translation, we can generate the difference map between the
translated before-event image and the original after-event image. Then, a novel
reliable pixel extraction module is proposed to select significantly
changed/unchanged pixel positions by fusing the pseudo change maps of fuzzy
c-means clustering and adaptive threshold. Finally, a binary change map is
obtained based on these selected pixel pairs and a binary classifier.
Experimental results on different unsupervised CD tasks with seasonal and style
changes demonstrate the effectiveness of the proposed UCDFormer. For example,
compared with several other related methods, UCDFormer improves performance on
the Kappa coefficient by more than 12\%. In addition, UCDFormer achieves
excellent performance for earthquake-induced landslide detection when
considering large-scale applications. The code is available at
\url{https://github.com/zhu-xlab/UCDFormer}
- Abstract(参考訳): 両時間画像の比較による変化検出(CD)はリモートセンシングにおいて重要な課題である。
面倒なラベル付き変更情報を必要としないという利点があるため、教師なしCDはコミュニティで広く注目を集めている。
しかし、既存の教師なしcdアプローチでは、多時期画像の照明や大気条件によって生じる季節やスタイルの違いをほとんど考慮しない。
そこで本稿では,リモートセンシング画像の領域シフト設定による変更検出を提案する。
さらに,UCDFormerと呼ばれる軽量トランスを用いた新しい教師なしCD手法を提案する。
具体的には, 2つの画像間の領域シフトをリアルタイムに緩和するために, 軽量トランスとドメイン固有親和度重みを有するトランス駆動画像変換を提案する。
画像翻訳後、翻訳前の画像と元の後画像との差分マップを生成することができる。
次に, ファジィc平均クラスタリングと適応しきい値の擬似変化マップを用いて, 大幅な変化/変更なし画素位置を選択するための, 新たな信頼性の高い画素抽出モジュールを提案する。
最後に、これらの選択された画素対とバイナリ分類器に基づいてバイナリ変更マップを求める。
季節変化とスタイル変化を伴う異なる教師なしcdタスクにおける実験結果は,提案するuddformerの有効性を示す。
例えば、他のいくつかのメソッドと比較して、UCDFormerはKappa係数のパフォーマンスを12\%以上改善している。
また,ucdformerは大規模地震時地すべり検出に優れた性能を発揮する。
コードは \url{https://github.com/zhu-xlab/UCDFormer} で入手できる。
関連論文リスト
- EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged [3.3885253104046993]
本稿では,リモートセンシング画像変化検出のためのEfficientCDという新しいディープラーニングフレームワークを提案する。
このフレームワークは機能抽出のバックボーンネットワークとしてEfficientNetを使用している。
EfficientCDは4つのリモートセンシングデータセットで実験的に検証されている。
論文 参考訳(メタデータ) (2024-07-22T19:11:50Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
リモートセンシング画像CDのためのトランスフォーマーベース学習フレームワークTransY-Netを提案する。
グローバルな視点からの特徴抽出を改善し、ピラミッド方式で多段階の視覚的特徴を組み合わせる。
提案手法は,4つの光学式および2つのSAR画像CDベンチマーク上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-22T07:42:19Z) - Exchange means change: an unsupervised single-temporal change detection
framework based on intra- and inter-image patch exchange [44.845959222180866]
画像内および画像間パッチ交換(I3PE)に基づく教師なし単一時間CDフレームワークを提案する。
I3PEフレームワークは、損傷のない、ラベルなしの単一時間リモートセンシング画像上で、深い変化検出を訓練することができる。
I3PEは教師なしのアプローチよりも優れており、SOTA法では10.65%と6.99%のF1値の改善を実現している。
論文 参考訳(メタデータ) (2023-10-01T14:50:54Z) - Remote Sensing Change Detection With Transformers Trained from Scratch [62.96911491252686]
トランスフォーマーベースの変更検出(CD)アプローチでは、大規模なイメージ分類でトレーニングされた事前トレーニングモデルを使用するか、別のCDデータセットで最初の事前トレーニングを頼りにしてから、ターゲットのベンチマークを微調整する。
我々は、4つの公開ベンチマークにおいて、スクラッチからトレーニングされながら最先端のパフォーマンスを実現するトランスフォーマーを用いたエンドツーエンドCDアプローチを開発した。
論文 参考訳(メタデータ) (2023-04-13T17:57:54Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
リモートセンシング変化検出(RS-CD)は、マルチテンポラルリモートセンシング画像(MT-RSI)から関連する変化を検出することを目的とする。
既存のRS-CD法の性能は、大規模な注釈付きデータセットのトレーニングによるものである。
本稿では,これらの問題に対処可能なディープメトリック学習に基づく教師なしCD手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:52:45Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
本稿では,変化検出タスク,すなわちDual-UNetのための新しいSiameseニューラルネットワークを提案する。
従来のバイテンポラル画像の符号化とは対照的に,画素の空間的差分関係に着目したエンコーダ差分アテンションモジュールを設計する。
実験により、提案手法は、一般的な季節変化検出データセットにおいて、常に最も高度な手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-12T14:24:09Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
教師付きクロスエントロピー(CE)損失に加えて、教師なしCD損失を定式化する半教師付きCDモデルを提案する。
2つの公開CDデータセットを用いて実験を行った結果,提案手法は教師付きCDの性能に近づきやすいことがわかった。
論文 参考訳(メタデータ) (2022-04-18T17:59:01Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Coarse-to-Fine Gaze Redirection with Numerical and Pictorial Guidance [74.27389895574422]
本稿では,数値誘導と画像誘導の両方を利用した新しい視線リダイレクトフレームワークを提案する。
提案手法は,画像品質とリダイレクト精度の両方の観点から,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2020-04-07T01:17:27Z) - A Novel Inspection System For Variable Data Printing Using Deep Learning [0.9176056742068814]
超低偽アラームレート(0.005%)で可変データプリント(VDP)を検査するための新しい手法を提案する。
このシステムは、参照画像と低コストスキャナーによってキャプチャされた画像の2つの画像の比較に基づいている。
論文 参考訳(メタデータ) (2020-01-13T15:07:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。