論文の概要: BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization
- arxiv url: http://arxiv.org/abs/2308.01207v1
- Date: Tue, 1 Aug 2023 09:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 12:31:30.884987
- Title: BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization
- Title(参考訳): BiERL: 双方向最適化によるメタ進化強化学習フレームワーク
- Authors: Junyi Wang, Yuanyang Zhu, Zhi Wang, Yan Zheng, Jianye Hao, Chunlin
Chen
- Abstract要約: 双レベル最適化(BiERL)による一般的なメタERLフレームワークを提案する。
我々は、内部レベルの進化した経験を情報的人口表現に組み込むエレガントなメタレベルアーキテクチャを設計する。
我々は MuJoCo と Box2D タスクの広範な実験を行い、一般的なフレームワークとして BiERL が様々なベースラインを上回り、ERL アルゴリズムの多様性の学習性能を一貫して向上することを検証する。
- 参考スコア(独自算出の注目度): 34.24884427152513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary reinforcement learning (ERL) algorithms recently raise attention
in tackling complex reinforcement learning (RL) problems due to high
parallelism, while they are prone to insufficient exploration or model collapse
without carefully tuning hyperparameters (aka meta-parameters). In the paper,
we propose a general meta ERL framework via bilevel optimization (BiERL) to
jointly update hyperparameters in parallel to training the ERL model within a
single agent, which relieves the need for prior domain knowledge or costly
optimization procedure before model deployment. We design an elegant meta-level
architecture that embeds the inner-level's evolving experience into an
informative population representation and introduce a simple and feasible
evaluation of the meta-level fitness function to facilitate learning
efficiency. We perform extensive experiments in MuJoCo and Box2D tasks to
verify that as a general framework, BiERL outperforms various baselines and
consistently improves the learning performance for a diversity of ERL
algorithms.
- Abstract(参考訳): 進化的強化学習(英語版) (erl) アルゴリズムは近年、高並列性のために複雑な強化学習 (rl) 問題に取り組むことに注目が集まっているが、ハイパーパラメータ(メタパラメータとも呼ばれる)を慎重に調整することなく、探索やモデル崩壊が不十分な傾向がある。
本稿では,双レベル最適化(BiERL)による汎用的メタERLフレームワークを提案し,単一エージェント内でERLモデルをトレーニングするために並列にハイパーパラメータを更新する。
我々は,内部レベルの進化経験を情報的集団表現に組み込んだエレガントなメタレベルアーキテクチャを設計し,学習効率を高めるために,メタレベル適合関数の簡易かつ実現可能な評価を導入する。
我々は MuJoCo と Box2D タスクの広範な実験を行い、一般的なフレームワークとして BiERL が様々なベースラインを上回り、ERL アルゴリズムの多様性の学習性能を一貫して向上することを検証する。
関連論文リスト
- MAMBA: an Effective World Model Approach for Meta-Reinforcement Learning [18.82398325614491]
本稿では,メタRL法とメタRL法の要素に基づくメタRLの新しいモデルベースアプローチを提案する。
本稿では,メタRLベンチマークドメインに対するアプローチの有効性を実証し,より優れたサンプル効率でより高いリターンが得られることを示す。
さらに,より困難な高次元領域のスレート上でのアプローチを検証し,実世界の一般化エージェントへの一歩を踏み出した。
論文 参考訳(メタデータ) (2024-03-14T20:40:36Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
本研究は, 深層強化学習(DRL)の可能性を活用した新しい枠組みを提案する。
DRLエージェントをRAYプラットフォームに統合することにより、RAYのリソースを効率的に利用してシステム適応性と制御を改善する新しいフレームワークであるRLlib-IMPALAの開発が容易になる。
論文 参考訳(メタデータ) (2024-02-24T23:25:35Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RLはメタ強化学習(Meta-RL)アルゴリズムである。
既存のMeta-RLメソッドは豊富なメタ学習データを必要とし、ロボット工学などの設定で適用性を制限する。
実験の結果,PACOH-RLはモデルベースRLおよびモデルベースMeta-RLベースラインよりも高い性能を示し,新しい動的条件に適応することがわかった。
論文 参考訳(メタデータ) (2023-11-13T18:51:57Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - PEAR: Primitive enabled Adaptive Relabeling for boosting Hierarchical Reinforcement Learning [25.84621883831624]
階層的強化学習は、時間的抽象と探索の増大を利用して複雑な長い水平方向のタスクを解く可能性がある。
プリミティブ・アダプティブ・アダプティブ・レバーベリング(PEAR)を提案する。
まず,いくつかの専門家による実験を適応的に実施し,効率的なサブゴール管理を実現する。
次に、強化学習(RL)と模倣学習(IL)を併用してHRLエージェントを共同最適化する。
論文 参考訳(メタデータ) (2023-06-10T09:41:30Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
固定点反復に基づく一般化クラスノセルスキーマンスキースキーム(GKM)を基本ODLモジュールとして設計する。
GKMスキームでは、最適トレーニングとハイパートレーニング変数を同時に解くために、バイレベルメタ最適化(BMO)アルゴリズムフレームワークを構築している。
論文 参考訳(メタデータ) (2022-06-16T01:50:25Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
本稿では,課題学習の目的を課題(あるいは課題の集合)の目的にシフトさせるメタラーニング手法を提案する。
我々のモデルであるREIN-2は、RLフレームワーク内で構成されたメタ学習スキームであり、その目的は、他のRLエージェントの作り方を学ぶメタRLエージェントを開発することである。
従来の最先端のDeep RLアルゴリズムと比較して、実験結果は、人気のあるOpenAI Gym環境において、我々のモデルの顕著な性能を示している。
論文 参考訳(メタデータ) (2021-10-11T10:13:49Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。