論文の概要: SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks
- arxiv url: http://arxiv.org/abs/2503.15478v1
- Date: Wed, 19 Mar 2025 17:55:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:37.307072
- Title: SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks
- Title(参考訳): SWEET-RL:協調推論タスクにおけるマルチターンLDMエージェントの訓練
- Authors: Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, Xian Li,
- Abstract要約: 大規模言語モデル(LLM)エージェントは、実世界のタスクでマルチターンインタラクションを実行する必要がある。
LLMエージェントを最適化するための既存のマルチターンRLアルゴリズムは、LLMの一般化能力を活用しながら、複数回にわたって効果的なクレジット割り当てを行うことができない。
本稿では,新たなRLアルゴリズムであるSWEET-RLを提案する。
我々の実験は、SWEET-RLがコルベンチにおける成功率と勝利率を、他の最先端マルチターンRLアルゴリズムと比較して6%向上することを示した。
- 参考スコア(独自算出の注目度): 110.20297293596005
- License:
- Abstract: Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks. However, existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs and it remains unclear how to develop such algorithms. To study this, we first introduce a new benchmark, ColBench, where an LLM agent interacts with a human collaborator over multiple turns to solve realistic tasks in backend programming and frontend design. Building on this benchmark, we propose a novel RL algorithm, SWEET-RL (RL with Step-WisE Evaluation from Training-time information), that uses a carefully designed optimization objective to train a critic model with access to additional training-time information. The critic provides step-level rewards for improving the policy model. Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms, enabling Llama-3.1-8B to match or exceed the performance of GPT4-o in realistic collaborative content creation.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは、実世界のタスクでマルチターンインタラクションを実行する必要がある。
しかし、LLMエージェントを最適化するための既存のマルチターンRLアルゴリズムは、LLMの一般化能力を活用しながら、複数回にわたって効果的なクレジット割り当てを行うことができず、そのようなアルゴリズムの開発方法は不明である。
そこで本研究では,LLMエージェントが複数回にわたって人間の協力者と対話し,バックエンドプログラミングやフロントエンド設計における現実的なタスクを解決するためのベンチマークColBenchを紹介する。
本稿では,新たなRLアルゴリズム SWEET-RL (RL with Step-WisE Evaluation from Training-time Information) を提案する。
批評家は政策モデルを改善するための段階的な報酬を提供する。
実験の結果、SWEET-RLはコルベンチにおける成功率と勝利率の6%向上を実現し、Llama-3.1-8Bが現実的な協調コンテンツ作成におけるGPT4-oの性能に適合または超えることを示した。
関連論文リスト
- MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT(Multi-Agent LLM Training)は、推論プロセスを生成、検証、改善ステップに分割する、新しいポストトレーニング戦略である。
MATH、GSM8K、CSQAでは、MALTは、それぞれ15.66%、7.42%、9.40%の相対的な改善で同じベースラインLLMを上回っている。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling [0.0]
1つの有望なアプローチは、RLエージェントを改善として訓練することであり、小さな変更を適用することで反復的に改善される最適以下のソリューションから始まる。
本手法を実世界の多目的生産スケジューリング問題に適用する。
当社のアプローチを、業界パートナの本当のデータを使って、他のアプローチと比較し、その優れたパフォーマンスを実証しました。
論文 参考訳(メタデータ) (2024-09-18T12:48:56Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Mutual Enhancement of Large Language and Reinforcement Learning Models through Bi-Directional Feedback Mechanisms: A Planning Case Study [1.3597551064547502]
我々は,大規模言語モデル(LLM)と強化学習(RL)モデルの課題に対処するために,教師による学習フレームワークを採用している。
この枠組みの中で、LLMは教師として、RLモデルは学生として機能する。
本手法の有効性を評価するために,この問題に対処し,実証実験を行うための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-12T14:35:57Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。