論文の概要: BCDDO: Binary Child Drawing Development Optimization
- arxiv url: http://arxiv.org/abs/2308.01270v1
- Date: Wed, 19 Jul 2023 11:32:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-06 10:54:56.712400
- Title: BCDDO: Binary Child Drawing Development Optimization
- Title(参考訳): BCDDO: バイナリ・チャイルド描画開発最適化
- Authors: Abubakr S. Issa, Yossra H. Ali, Tarik A. Rashid
- Abstract要約: ベクトル化(Vectorization)は、一度に1つの値で動作するアルゴリズムを、一度に1つの値のコレクションで動作して高速に実行するアルゴリズムに変換するテクニックである。
ベクトル化手法はまた、複数の繰り返しを1つの演算に置き換えることで、アルゴリズムの性能を高速化する。
本研究では,メタヒューリスティックアルゴリズムの1つにベクトル化手法を適用し,ベクトル化アルゴリズムと非ベクトル化アルゴリズムを比較した。
- 参考スコア(独自算出の注目度): 0.9990687944474739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents the vectorization of metaheuristic algorithms as the
first stage of vectorized optimization implementation. Vectorization is a
technique for converting an algorithm, which operates on a single value at a
time to one that operates on a collection of values at a time to execute
rapidly. The vectorization technique also operates by replacing multiple
iterations into a single operation, which improves the algorithm's performance
in speed and makes the algorithm simpler and easier to be implemented. It is
important to optimize the algorithm by implementing the vectorization
technique, which improves the program's performance, which requires less time
and can run long-running test functions faster, also execute test functions
that cannot be implemented in non-vectorized algorithms and reduces iterations
and time complexity. Converting to vectorization to operate several values at
once and enhance algorithms' speed and efficiency is a solution for long
running times and complicated algorithms. The objective of this study is to use
the vectorization technique on one of the metaheuristic algorithms and compare
the results of the vectorized algorithm with the algorithm which is
non-vectorized.
- Abstract(参考訳): 本研究では,メタヒューリスティックアルゴリズムのベクトル化をベクトル化最適化の第一段階として提案する。
ベクトル化(Vectorization)は、一度に1つの値で動作するアルゴリズムを、一度に1つの値のコレクションで動作して高速に実行するアルゴリズムに変換するテクニックである。
ベクトル化技術は、複数のイテレーションを1つの操作に置き換えることで、アルゴリズムのパフォーマンスを向上し、アルゴリズムをよりシンプルに実装しやすくする。
ベクタライズ手法を実装してアルゴリズムを最適化することが重要であり、これによりプログラムのパフォーマンスが向上し、長いテスト関数を高速に実行でき、非ベクトル化アルゴリズムでは実装できないテスト関数を実行し、イテレーションや時間の複雑さを低減できる。
ベクトル化に変換して複数の値を一度に操作し、アルゴリズムの速度と効率を高めることは、長い実行時間と複雑なアルゴリズムの解決策である。
本研究の目的は,メタヒューリスティックアルゴリズムの1つにベクトル化手法を用い,ベクトル化アルゴリズムの結果を非ベクトル化アルゴリズムと比較することである。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Optimal Kernel Choice for Score Function-based Causal Discovery [92.65034439889872]
本稿では,データに最も適合する最適なカーネルを自動的に選択する,一般化スコア関数内のカーネル選択手法を提案する。
合成データと実世界のベンチマークの両方で実験を行い,提案手法がカーネル選択法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-14T09:32:20Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
本研究では3次元ポーズ推定のための不確実性認識テスト時間最適化フレームワークを提案する。
我々のアプローチは、Human3.6Mの4.5%という大きなマージンで、過去最高の結果を上回っている。
論文 参考訳(メタデータ) (2024-02-04T04:28:02Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
我々は、ラベルの取得に最も有用なポイントクラウドを特定するために、新しいカーネル戦略を利用する。
1段目(SECOND)と2段目(SECOND)の両方に対応するため、アノテーションに選択した境界ボックスの総数と検出性能のトレードオフをよく組み込んだ分類エントロピー接点を組み込んだ。
その結果,ボックスレベルのアノテーションのコストは約44%,計算時間は26%削減された。
論文 参考訳(メタデータ) (2023-07-16T04:27:03Z) - An efficient hybrid classification approach for COVID-19 based on Harris
Hawks Optimization and Salp Swarm Optimization [0.0]
本研究では、Covid-19分類のためのHarris Hawks Optimization Algorithm(HHO)とSalp Swarm Optimization(SSA)のハイブリッドバイナリバージョンを提案する。
提案アルゴリズム(HHOSSA)は,SVMで96%の精度,2つの分類器で98%,98%の精度を達成した。
論文 参考訳(メタデータ) (2022-12-25T19:52:18Z) - A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study [1.6436293069942312]
情報科学の急速な発展によって引き起こされる「次元のカルス」は、大きなデータセットを扱う際に悪影響を及ぼす可能性がある。
本研究では,スナロー探索アルゴリズム(SSA)の変種であるTent L'evy Flying Sparrow Searchアルゴリズム(TFSSA)を提案する。
TFSSAは、分類のためにパッキングパターンにおける機能の最も優れたサブセットを選択するために使用される。
論文 参考訳(メタデータ) (2022-09-20T15:12:10Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection [0.0]
本稿では,Reinforced Swarm Optimization (RSO) という特徴選択アルゴリズムを提案する。
このアルゴリズムは、広く使われているBee Swarm Optimization (BSO)アルゴリズムとReinforcement Learning (RL)アルゴリズムを組み込んで、優れた検索エージェントの報酬を最大化し、劣悪なエージェントを罰する。
提案手法は、バランスの取れたデータと不均衡なデータの完全なブレンドを含む、広く知られている25のUCIデータセットで評価される。
論文 参考訳(メタデータ) (2021-07-29T17:38:04Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
子宮頸癌は世界でも最も致命的かつ一般的な疾患の1つである。
ディープラーニングと特徴選択を利用した完全自動化フレームワークを提案する。
このフレームワークは3つの公開ベンチマークデータセットで評価されている。
論文 参考訳(メタデータ) (2021-06-09T08:57:22Z) - A Scalable Feature Selection and Opinion Miner Using Whale Optimization
Algorithm [6.248184589339059]
機能選択技術を使用することで、データの理解が向上するだけでなく、スピードと正確性も向上する。
本稿では,Whale Optimizationアルゴリズムを,特徴量の最適部分集合の探索に適用する。
論文 参考訳(メタデータ) (2020-04-21T01:08:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。