Quantum Algorithms for the computation of quantum thermal averages at
work
- URL: http://arxiv.org/abs/2308.01279v1
- Date: Wed, 2 Aug 2023 17:05:10 GMT
- Title: Quantum Algorithms for the computation of quantum thermal averages at
work
- Authors: Riccardo Aiudi, Claudio Bonanno, Claudio Bonati, Giuseppe Clemente,
Massimo D'Elia, Lorenzo Maio, Davide Rossini, Salvatore Tirone, Kevin
Zambello
- Abstract summary: We consider the practical implementation of the so-called Quantum-Quantum Metropolis algorithm.
We simulate a basic system of three frustrated quantum spins and discuss its systematics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, a variety of quantum algorithms have been devised to estimate
thermal averages on a genuine quantum processor. In this paper, we consider the
practical implementation of the so-called Quantum-Quantum Metropolis algorithm.
As a testbed for this purpose, we simulate a basic system of three frustrated
quantum spins and discuss its systematics, also in comparison with the Quantum
Metropolis Sampling algorithm.
Related papers
- Distributed Quantum Simulation [13.11934294941432]
We propose communication-efficient distributed quantum simulation protocols.
Our protocols are shown to be optimal by deriving a lower bound on the quantum communication complexity.
Our work paves the way for achieving a practical quantum advantage by scalable quantum simulation.
arXiv Detail & Related papers (2024-11-05T07:48:40Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum algorithms in particle physics [0.0]
We discuss how a quantum approach reduces the complexity of jet clustering algorithms.
We show how quantum algorithms efficiently identify causal configurations of multiloop Feynman diagrams.
arXiv Detail & Related papers (2024-01-29T15:01:57Z) - Efficient Quantum Modular Arithmetics for the ISQ Era [0.0]
This study presents an array of quantum circuits, each precision-engineered for modular arithmetic functions.
We provide a theoretical framework and practical implementations in the PennyLane quantum software.
arXiv Detail & Related papers (2023-11-14T21:34:39Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Improved maximum-likelihood quantum amplitude estimation [0.0]
Quantum estimation is a key subroutine in a number of powerful quantum algorithms, including quantum-enhanced Monte Carlo simulation and quantum machine learning.
In this article, we deepen the analysis of Maximum-likelihood quantum amplitude estimation (MLQAE) to put the algorithm in a more prescriptive form, including scenarios where quantum circuit depth is limited.
We then propose and numerically validate a modification to the algorithm to overcome this problem, bringing the algorithm even closer to being useful as a practical subroutine on near- and mid-term quantum hardware.
arXiv Detail & Related papers (2022-09-07T17:30:37Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.