Distributed Quantum Simulation
- URL: http://arxiv.org/abs/2411.02881v1
- Date: Tue, 05 Nov 2024 07:48:40 GMT
- Title: Distributed Quantum Simulation
- Authors: Tianfeng Feng, Jue Xu, Wenjun Yu, Zekun Ye, Penghui Yao, Qi Zhao,
- Abstract summary: We propose communication-efficient distributed quantum simulation protocols.
Our protocols are shown to be optimal by deriving a lower bound on the quantum communication complexity.
Our work paves the way for achieving a practical quantum advantage by scalable quantum simulation.
- Score: 13.11934294941432
- License:
- Abstract: Quantum simulation is a promising pathway toward practical quantum advantage by simulating large-scale quantum systems. In this work, we propose communication-efficient distributed quantum simulation protocols by exploring three quantum simulation algorithms, including the product formula, the truncated Taylor series, and the processing of quantum signals over a quantum network. Our protocols are further shown to be optimal by deriving a lower bound on the quantum communication complexity for distributed quantum simulations with respect to evolution time and the number of distributed quantum processing units. Additionally, our distributed techniques go beyond quantum simulation and are applied to distributed versions of Grover's algorithms and quantum phase estimation. Our work not only paves the way for achieving a practical quantum advantage by scalable quantum simulation but also enlightens the design of more general distributed architectures across various physical systems for quantum computation.
Related papers
- Simulation of Quantum Transduction Strategies for Quantum Networks [7.486717790185952]
We extend SeQUeNCe, a discrete-event simulator of quantum networks, with a quantum transducer component.
We explore two protocols for transmitting quantum information between superconducting nodes via optical channels.
Our preliminary results align with theoretical predictions, offering simulation-based validation of the protocols.
arXiv Detail & Related papers (2024-11-18T08:47:11Z) - Lower bound for simulation cost of open quantum systems: Lipschitz continuity approach [5.193557673127421]
We present a general framework to calculate the lower bound for simulating a broad class of quantum Markov semigroups.
Our framework can be applied to both unital and non-unital quantum dynamics.
arXiv Detail & Related papers (2024-07-22T03:57:41Z) - Multi-target quantum compilation algorithm [0.0]
Quantum compilation is a process of converting a target unitary operation into a trainable unitary represented by a quantum circuit.
We develop a multi-target quantum compilation algorithm to improve the performance and flexibility of simulating multiple quantum systems.
arXiv Detail & Related papers (2024-07-01T06:47:24Z) - Quantum algorithms in distributed quantum computing [0.0]
Distributed quantum computing (DQC) provides a way to scale quantum computers using multiple quantum processing units (QPU) which are connected through quantum communication links.
We have built a distributed quantum computing simulator and used it to investigate quantum algorithms.
We show the applicability of dynamic quantum circuits in DQC, where mid-circuit measurements, local operations, and classical communication are used in place of noisy inter-processor (nonlocal) quantum gates.
arXiv Detail & Related papers (2024-02-16T15:05:15Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - QuantumSkynet: A High-Dimensional Quantum Computing Simulator [0.0]
Current implementations of quantum computing simulators are limited to two-level quantum systems.
Recent advances in high-dimensional quantum computing systems have demonstrated the viability of working with multi-level superposition and entanglement.
We introduce QuantumSkynet, a novel high-dimensional cloud-based quantum computing simulator.
arXiv Detail & Related papers (2021-06-30T06:28:18Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.