Neural Pharmacodynamic State Space Modeling
- URL: http://arxiv.org/abs/2102.11218v1
- Date: Mon, 22 Feb 2021 17:51:11 GMT
- Title: Neural Pharmacodynamic State Space Modeling
- Authors: Zeshan Hussain, Rahul G. Krishnan, David Sontag
- Abstract summary: We propose a deep generative model that makes use of a novel attention-based neural architecture inspired by the physics of how treatments affect disease state.
Our proposed model yields significant improvements in generalization and, on real-world clinical data, provides interpretable insights into the dynamics of cancer progression.
- Score: 1.589915930948668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling the time-series of high-dimensional, longitudinal data is important
for predicting patient disease progression. However, existing neural network
based approaches that learn representations of patient state, while very
flexible, are susceptible to overfitting. We propose a deep generative model
that makes use of a novel attention-based neural architecture inspired by the
physics of how treatments affect disease state. The result is a scalable and
accurate model of high-dimensional patient biomarkers as they vary over time.
Our proposed model yields significant improvements in generalization and, on
real-world clinical data, provides interpretable insights into the dynamics of
cancer progression.
Related papers
- Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response [41.94295877935867]
We build upon a spatially and demographically resolved infectious disease model and train a graph neural network for data sets representing early phases of the pandemic.
The suggested approach yields potential for on-the-fly execution and, thus, integration of disease dynamics models in low-barrier website applications.
arXiv Detail & Related papers (2024-11-10T15:54:09Z) - Dynamic Hypergraph-Enhanced Prediction of Sequential Medical Visits [1.9622267160034885]
This study introduces a pioneering Dynamic Hypergraph Networks (DHCE) model designed to predict future medical diagnoses from electronic health records with enhanced accuracy.
The DHCE model innovates by identifying and differentiating acute and chronic diseases within a patient's visit history, constructing dynamic hypergraphs that capture the complex, high-order interactions between diseases.
arXiv Detail & Related papers (2024-08-08T04:19:20Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
We propose the use of Tumor Dynamic Neural-ODE as a pharmacology-informed neural network.
We show that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data.
We show that the generated metrics can be used to predict patients' overall survival (OS) with high accuracy.
arXiv Detail & Related papers (2023-08-02T18:08:27Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Two-step interpretable modeling of Intensive Care Acquired Infections [0.0]
We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models.
The aim is two-fold: to improve the predictive power while maintaining interpretability of the models.
arXiv Detail & Related papers (2023-01-26T14:54:17Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.