論文の概要: HANDAL: A Dataset of Real-World Manipulable Object Categories with Pose
Annotations, Affordances, and Reconstructions
- arxiv url: http://arxiv.org/abs/2308.01477v1
- Date: Wed, 2 Aug 2023 23:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-04 15:36:28.611509
- Title: HANDAL: A Dataset of Real-World Manipulable Object Categories with Pose
Annotations, Affordances, and Reconstructions
- Title(参考訳): HANDAL: Pose Annotation, Affordances, Restructionsを備えた実世界の操作可能なオブジェクトカテゴリのデータセット
- Authors: Andrew Guo, Bowen Wen, Jianhe Yuan, Jonathan Tremblay, Stephen Tyree,
Jeffrey Smith, Stan Birchfield
- Abstract要約: 本稿では,カテゴリレベルのオブジェクトポーズ推定とアベイランス予測のためのHANDALデータセットを提案する。
このデータセットは、17のカテゴリで212の現実世界のオブジェクトの2.2kビデオから308kの注釈付き画像フレームで構成されている。
6-DoFカテゴリレベルのポーズ+スケール推定と関連するタスクに対するデータセットの有用性について概説する。
- 参考スコア(独自算出の注目度): 17.9178233068395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the HANDAL dataset for category-level object pose estimation and
affordance prediction. Unlike previous datasets, ours is focused on
robotics-ready manipulable objects that are of the proper size and shape for
functional grasping by robot manipulators, such as pliers, utensils, and
screwdrivers. Our annotation process is streamlined, requiring only a single
off-the-shelf camera and semi-automated processing, allowing us to produce
high-quality 3D annotations without crowd-sourcing. The dataset consists of
308k annotated image frames from 2.2k videos of 212 real-world objects in 17
categories. We focus on hardware and kitchen tool objects to facilitate
research in practical scenarios in which a robot manipulator needs to interact
with the environment beyond simple pushing or indiscriminate grasping. We
outline the usefulness of our dataset for 6-DoF category-level pose+scale
estimation and related tasks. We also provide 3D reconstructed meshes of all
objects, and we outline some of the bottlenecks to be addressed for
democratizing the collection of datasets like this one.
- Abstract(参考訳): 本稿では,カテゴリレベルのオブジェクトポーズ推定とアベイランス予測のためのHANDALデータセットを提案する。
これまでのデータセットとは異なり、wesはロボットのマニピュレータ(ペンチ、道具、スクリュードライバーなど)による機能把握に適した大きさと形状のロボット対応マニピュレータに焦点を当てている。
当社のアノテーションプロセスは合理化されており、市販のカメラとセミオートマチックな処理だけで、クラウドソーシングなしで高品質な3dアノテーションを作成できます。
データセットは、17のカテゴリの212の現実世界のオブジェクトの2.2kビデオから308kの注釈付き画像フレームで構成されている。
我々は,ロボットマニピュレータが単純な押圧や識別不能な把握以上の環境と対話する必要がある現実的なシナリオにおいて,ハードウェアおよびキッチンツールオブジェクトに焦点をあてる。
6-DoFカテゴリレベルのポーズ+スケール推定と関連するタスクに対するデータセットの有用性について概説する。
また、すべてのオブジェクトの3d再構築メッシュを提供し、このようなデータセットのコレクションを民主化するために対処すべきボトルネックを概説します。
関連論文リスト
- ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
オブジェクト中心の把握のためのエンドツーエンドアーキテクチャを導入する。
提案手法の有効性を,合成データセット上での最先端手法に対して広範囲に評価することにより示す。
論文 参考訳(メタデータ) (2024-01-18T12:41:41Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
オブジェクトのポーズ推定に重点を置いています。
このアプローチは,オブジェクトの複数ビュー,それらの視点におけるカメラのパラメータ,オブジェクトの3次元CADモデルという3つの情報に依存している。
推定対象のポーズが99.65%の精度で真理把握候補を把握できることが示される。
論文 参考訳(メタデータ) (2023-11-14T14:27:53Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
本稿では,3次元オブジェクト認識キャラクタ合成における新しいシーンオブジェクトへのロバストさと一般化が,参照オブジェクトを1つも持たないモーションモデルをトレーニングすることで実現可能であることを示す。
我々は、オブジェクト専用のデータセットに基づいて訓練された暗黙的な特徴表現を活用し、オブジェクトの周りのSE(3)-同変記述体フィールドをエンコードする。
本研究では,3次元仮想キャラクタの動作と相互作用の質,および未知のオブジェクトを持つシナリオに対するロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-24T17:59:51Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
本稿では,2次元セグメントを3次元に上げ,ニューラルネットワーク表現を用いて融合させる新しい手法を提案する。
このアプローチの中核は、高速なクラスタリング目的関数であり、多数のオブジェクトを持つシーンにスケーラブルで適しています。
我々のアプローチは、ScanNet、Hypersim、Replicaのデータセットからの挑戦的なシーンにおいて、最先端の状況よりも優れています。
論文 参考訳(メタデータ) (2023-06-07T17:57:45Z) - You Only Look at One: Category-Level Object Representations for Pose
Estimation From a Single Example [26.866356430469757]
所望のカテゴリから1つのオブジェクトだけを検査してカテゴリレベルのポーズ推定を行う手法を提案する。
本稿では,RGBDセンサを搭載したロボットマニピュレータを用いて,新しい物体のオンライン6次元ポーズ推定を行う。
論文 参考訳(メタデータ) (2023-05-22T01:32:24Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
現在の技術は参照3Dオブジェクトに大きく依存しており、その一般化性を制限し、新しいオブジェクトカテゴリに拡張するのにコストがかかる。
本稿では,オブジェクトに適合するプリミティブな形状に対してオブジェクトのポーズを予測する,オブジェクトのポーズ推定のためのスーパークワッドリックベースのフレームワークであるShapeShiftを提案する。
論文 参考訳(メタデータ) (2023-04-10T20:55:41Z) - 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark [17.493403705281008]
本稿では,ロボット操作研究を中心に,既知の物体の6-DoFポーズ推定のための新しいデータセットを提案する。
我々は、おもちゃの食料品の3Dスキャンされたテクスチャモデルと、難解で散らかったシーンにおけるオブジェクトのRGBD画像を提供する。
半自動RGBD-to-modelテクスチャ対応を用いて、画像は数ミリ以内の精度で実証された地上の真実のポーズで注釈付けされる。
また,ADD-Hと呼ばれる新しいポーズ評価尺度を提案し,対象形状の対称性に頑健なハンガリー代入アルゴリズムについて,その明示的な列挙を必要とせず提案する。
論文 参考訳(メタデータ) (2022-03-11T01:19:04Z) - Semi-automatic 3D Object Keypoint Annotation and Detection for the
Masses [42.34064154798376]
本稿では,標準的なロボットアームに装着した手首カメラを用いて,データセットの収集とラベル付けを行う半自動方式を提案する。
動作中の3Dオブジェクトのキーポイント検出器を取得して、わずか数時間でデータ収集、アノテーション、学習の全プロセスを実行できます。
論文 参考訳(メタデータ) (2022-01-19T15:41:54Z) - Neural Descriptor Fields: SE(3)-Equivariant Object Representations for
Manipulation [75.83319382105894]
対象と対象の相対的なポーズを符号化するオブジェクト表現であるニューラル・ディスクリプタ・フィールド(NDF)を提案する。
NDFは、専門家ラベル付きキーポイントに依存しない3D自動エンコーディングタスクを通じて、自己教師型で訓練される。
我々のパフォーマンスは、オブジェクトインスタンスと6-DoFオブジェクトの両方のポーズを一般化し、2Dディスクリプタに依存する最近のベースラインを著しく上回ります。
論文 参考訳(メタデータ) (2021-12-09T18:57:15Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
本稿では,オブジェクト間の関係のモデル化を継続するregradという新しいデータセットを提案する。
データセットは2D画像と3Dポイントクラウドの両方で収集されます。
ユーザは、好きなだけ多くのデータを生成するために、自由に独自のオブジェクトモデルをインポートできる。
論文 参考訳(メタデータ) (2021-04-29T05:31:21Z) - Where2Act: From Pixels to Actions for Articulated 3D Objects [54.19638599501286]
可動部を有する関節物体の押出しや引抜き等の基本動作に関連する高度に局所化された動作可能な情報を抽出する。
シミュレーションでネットワークをトレーニングできるオンラインデータサンプリング戦略を備えた学習から対話までのフレームワークを提案します。
私たちの学習モデルは、現実世界のデータにも転送します。
論文 参考訳(メタデータ) (2021-01-07T18:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。