Quantum speedups for stochastic optimization
- URL: http://arxiv.org/abs/2308.01582v2
- Date: Thu, 25 Jul 2024 03:21:25 GMT
- Title: Quantum speedups for stochastic optimization
- Authors: Aaron Sidford, Chenyi Zhang,
- Abstract summary: We consider the problem of minimizing a continuous function given quantumvitzvariance to an oracle.
We provide two new methods for the special case of minimizing a Lipsch avvitz function.
- Score: 18.32349609443295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of minimizing a continuous function given quantum access to a stochastic gradient oracle. We provide two new methods for the special case of minimizing a Lipschitz convex function. Each method obtains a dimension versus accuracy trade-off which is provably unachievable classically and we prove that one method is asymptotically optimal in low-dimensional settings. Additionally, we provide quantum algorithms for computing a critical point of a smooth non-convex function at rates not known to be achievable classically. To obtain these results we build upon the quantum multivariate mean estimation result of Cornelissen et al. 2022 and provide a general quantum-variance reduction technique of independent interest.
Related papers
- Qubit-efficient quantum combinatorial optimization solver [0.0]
We develop a qubit-efficient algorithm that overcomes the limitation by mapping a candidate bit solution to an entangled wave function of fewer qubits.
This approach could benefit near-term intermediate-scale and future fault-tolerant small-scale quantum devices.
arXiv Detail & Related papers (2024-07-22T11:02:13Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Optimal Low-Depth Quantum Signal-Processing Phase Estimation [0.029541734875307393]
We introduce Quantum Signal-Processing Phase Estimation algorithms that are robust against challenges and achieve optimal performance.
Our approach achieves an unprecedented standard deviation accuracy of $10-4$ radians for estimating unwanted swap angles in superconducting two-qubit experiments.
Our results are rigorously validated against the quantum Fisher information, confirming our protocol's ability to achieve unmatched precision for two-qubit gate learning.
arXiv Detail & Related papers (2024-06-17T10:33:52Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - A Sublinear-Time Quantum Algorithm for Approximating Partition Functions [0.0]
We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time.
This is the first speed-up of this type to be obtained over the seminal nearly-linear time of vStefankovivc, Vempala and Vigoda.
arXiv Detail & Related papers (2022-07-18T14:41:48Z) - Bayesian Learning of Parameterised Quantum Circuits [0.0]
We take a probabilistic point of view and reformulate the classical optimisation as an approximation of a Bayesian posterior.
We describe a dimension reduction strategy based on a maximum a posteriori point estimate with a Laplace prior.
Experiments on the Quantinuum H1-2 computer show that the resulting circuits are faster to execute and less noisy than circuits trained without a gradient.
arXiv Detail & Related papers (2022-06-15T14:20:14Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
We consider non- Hilbert optimization using first-order algorithms for which the gradient estimates may have tails.
We show that a combination of gradient, momentum, and normalized gradient descent convergence to critical points in high-probability with best-known iteration for smooth losses.
arXiv Detail & Related papers (2021-06-28T00:17:01Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Practical Schemes for Finding Near-Stationary Points of Convex
Finite-Sums [45.91933657088324]
We conduct a systematic study of the algorithmic techniques in finding near-stationary points of convex finite-sums.
Our main contributions are several algorithmic discoveries.
We put an emphasis on the simplicity and practicality of the new schemes, which could facilitate future developments.
arXiv Detail & Related papers (2021-05-25T16:46:35Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.