TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network
- URL: http://arxiv.org/abs/2312.10187v2
- Date: Tue, 5 Mar 2024 19:40:24 GMT
- Title: TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network
- Authors: Nhat-Tan Bui and Dinh-Hieu Hoang and Thinh Phan and Minh-Triet Tran
and Brijesh Patel and Donald Adjeroh and Ngan Le
- Abstract summary: We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
- Score: 9.770923451320938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The electrocardiogram (ECG) is a valuable signal used to assess various
aspects of heart health, such as heart rate and rhythm. It plays a crucial role
in identifying cardiac conditions and detecting anomalies in ECG data. However,
distinguishing between normal and abnormal ECG signals can be a challenging
task. In this paper, we propose an approach that leverages anomaly detection to
identify unhealthy conditions using solely normal ECG data for training.
Furthermore, to enhance the information available and build a robust system, we
suggest considering both the time series and time-frequency domain aspects of
the ECG signal. As a result, we introduce a specialized network called the
Multimodal Time and Spectrogram Restoration Network (TSRNet) designed
specifically for detecting anomalies in ECG signals. TSRNet falls into the
category of restoration-based anomaly detection and draws inspiration from both
the time series and spectrogram domains. By extracting representations from
both domains, TSRNet effectively captures the comprehensive characteristics of
the ECG signal. This approach enables the network to learn robust
representations with superior discrimination abilities, allowing it to
distinguish between normal and abnormal ECG patterns more effectively.
Furthermore, we introduce a novel inference method, termed Peak-based Error,
that specifically focuses on ECG peaks, a critical component in detecting
abnormalities. The experimental result on the large-scale dataset PTB-XL has
demonstrated the effectiveness of our approach in ECG anomaly detection, while
also prioritizing efficiency by minimizing the number of trainable parameters.
Our code is available at https://github.com/UARK-AICV/TSRNet.
Related papers
- EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection [7.574088346030774]
This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data.
In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME.
arXiv Detail & Related papers (2024-04-08T13:01:59Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts.
GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data.
We propose a novel Conditional Generative Adrial Network to simultaneously generate ECG signals for different categories and detect cardiac abnormalities.
arXiv Detail & Related papers (2021-07-16T02:53:14Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.