論文の概要: Enhancing Visibility in Nighttime Haze Images Using Guided APSF and
Gradient Adaptive Convolution
- arxiv url: http://arxiv.org/abs/2308.01738v3
- Date: Fri, 8 Sep 2023 19:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 19:08:15.554097
- Title: Enhancing Visibility in Nighttime Haze Images Using Guided APSF and
Gradient Adaptive Convolution
- Title(参考訳): ガイド付きAPSFとグラディエント適応畳み込みを用いた夜間ヘイズ画像の可視性向上
- Authors: Yeying Jin, Beibei Lin, Wending Yan, Wei Ye, Yuan Yuan and Robby T.
Tan
- Abstract要約: 我々は、光を抑え、低照度領域を高めることにより、一夜のヘイズ画像からの視認性を高める。
本手法は,GTA5夜間ヘイズデータセット上で,最先端の手法よりも13$%高いPSNRを30.38dBで達成する。
- 参考スコア(独自算出の注目度): 30.395213789178275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visibility in hazy nighttime scenes is frequently reduced by multiple
factors, including low light, intense glow, light scattering, and the presence
of multicolored light sources. Existing nighttime dehazing methods often
struggle with handling glow or low-light conditions, resulting in either
excessively dark visuals or unsuppressed glow outputs. In this paper, we
enhance the visibility from a single nighttime haze image by suppressing glow
and enhancing low-light regions. To handle glow effects, our framework learns
from the rendered glow pairs. Specifically, a light source aware network is
proposed to detect light sources of night images, followed by the APSF (Angular
Point Spread Function)-guided glow rendering. Our framework is then trained on
the rendered images, resulting in glow suppression. Moreover, we utilize
gradient-adaptive convolution, to capture edges and textures in hazy scenes. By
leveraging extracted edges and textures, we enhance the contrast of the scene
without losing important structural details. To boost low-light intensity, our
network learns an attention map, then adjusted by gamma correction. This
attention has high values on low-light regions and low values on haze and glow
regions. Extensive evaluation on real nighttime haze images, demonstrates the
effectiveness of our method. Our experiments demonstrate that our method
achieves a PSNR of 30.38dB, outperforming state-of-the-art methods by 13$\%$ on
GTA5 nighttime haze dataset. Our data and code is available at:
\url{https://github.com/jinyeying/nighttime_dehaze}.
- Abstract(参考訳): 暗い夜のシーンの視認性は、低光度、激しい輝き、光散乱、多色光源の存在など、複数の要因によってしばしば低下する。
既存の夜間の消光法は、しばしば光や低照度の条件を扱うのに苦労し、過度に暗い視界または抑圧されていない光の出力をもたらす。
本稿では,明度を抑え,低照度領域を増大させることにより,夜間の暗視画像からの視認性を高める。
我々のフレームワークは、発光効果を扱うために、蛍光光対から学習する。
具体的には、夜間画像の光源を検出するために光源認識ネットワークを提案し、次にAPSF(Angular Point Spread Function)誘導光描画を行う。
私たちのフレームワークは、レンダリングされたイメージでトレーニングされ、グロー抑制につながります。
さらに,グラデーション適応畳み込みを利用して,エッジやテクスチャをぼんやりとしたシーンで捉える。
抽出されたエッジとテクスチャを活用することで,重要な構造的詳細を失うことなく,シーンのコントラストを高める。
低光強度を高めるために,ネットワークは注意マップを学習し,ガンマ補正によって調整する。
この注目は、低照度領域に高い値と、光沢領域に低い値を持つ。
リアルタイムヘイズ画像の広範囲評価を行い,本手法の有効性を実証した。
実験により,GTA5夜間ヘイズデータセットのPSNRは30.38dBで,最先端の手法よりも13$\%高い性能を示した。
私たちのデータとコードは、 \url{https://github.com/jinyeying/nighttime_dehaze} で利用可能です。
関連論文リスト
- Beyond Night Visibility: Adaptive Multi-Scale Fusion of Infrared and
Visible Images [49.75771095302775]
赤外線および可視画像を用いた適応型マルチスケール核融合ネットワーク(AMFusion)を提案する。
まず、赤外画像と可視画像から空間的特徴と意味的特徴を分離し、前者が光分布の調整に使用される。
第2に,事前学習したバックボーンから抽出した検出機能を利用して,意味的特徴の融合を誘導する。
第3に、通常の光強度で融合画像を制約する新しい照明損失を提案する。
論文 参考訳(メタデータ) (2024-03-02T03:52:07Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
低照度画像強調(LLIE)タスクは、劣化した低照度画像から詳細と視覚情報を復元する傾向がある。
水平/垂直インテンシティ(HVI)と呼ばれる新しいトレーニング可能なカラー空間を提案する。
輝度と色をRGBチャネルから切り離して、拡張中の不安定性を緩和するだけでなく、トレーニング可能なパラメータによって異なる照明範囲の低照度画像にも適応する。
論文 参考訳(メタデータ) (2024-02-08T16:47:43Z) - NDELS: A Novel Approach for Nighttime Dehazing, Low-Light Enhancement,
and Light Suppression [4.976703689624386]
本稿では、NDELS(Nighttime Dehazing, Low-Light Enhancement and Light Suppression)という先駆的なソリューションを紹介する。
NDELSは3つの重要なプロセスを組み合わせて、可視性、低照度領域を強化し、明るい光源からのグレアを効果的に抑制する。
NDELSの有効性は、4つの多様なデータセットにわたる8つの最先端アルゴリズムとの広範な比較を通じて厳密に検証されている。
論文 参考訳(メタデータ) (2023-12-11T21:38:32Z) - Illumination Distillation Framework for Nighttime Person
Re-Identification and A New Benchmark [29.6321130075977]
本稿では、夜間のRe-IDにおける低照度課題に対処するための照明蒸留フレームワーク(IDF)を提案する。
IDFは、マスターブランチ、照明増強ブランチ、照明蒸留モジュールから構成される。
私たちは、600のIDを含むNight600という、現実世界の夜間人物Re-IDデータセットを構築しました。
論文 参考訳(メタデータ) (2023-08-31T06:45:56Z) - From Generation to Suppression: Towards Effective Irregular Glow Removal
for Nighttime Visibility Enhancement [22.565044107631696]
既存の低照度画像強調法 (LLIE) は、主に暗黒領域の明るさを改善するために設計されている。
これらの手法は、他の大きな視界の損傷である、夜間の夜景における光の影響を限定的に探究することができる。
大気点拡散関数(APSF)に基づく多重散乱推定による物理光発生の学習法を提案する。
提案手法はゼロショット学習に基づいており、ペアやアンペアのトレーニングデータに頼らず、光抑制と低照度強化の両方において提案手法の有効性を実証的に評価する。
論文 参考訳(メタデータ) (2023-07-31T15:51:15Z) - Flare7K++: Mixing Synthetic and Real Datasets for Nighttime Flare
Removal and Beyond [77.72043833102191]
962個の実撮影フレア画像(Flare-R)と7000個の合成フレア画像(Flare7K)からなる夜間フレア除去データセットを初めて導入する。
Flare7Kと比較して、Frare7K++は、合成フレアのみを使用することで、光源周辺の複雑な劣化を取り除くのに特に効果的である。
この問題に対処するために、Frare7K++で光源のアノテーションを付加し、レンズフレアを除去しながら光源を保存するための新しいエンドツーエンドパイプラインを提案する。
論文 参考訳(メタデータ) (2023-06-07T08:27:44Z) - Boosting Night-time Scene Parsing with Learnable Frequency [53.05778451012621]
NTSP(Night-Time Scene Parsing)は多くの視覚アプリケーション、特に自律運転に必須である。
既存の手法のほとんどは日中シーン解析のために提案されている。
提案手法は,NightCity,NightCity+およびBDD100K-nightデータセットの最先端手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2022-08-30T13:09:59Z) - Unsupervised Night Image Enhancement: When Layer Decomposition Meets
Light-Effects Suppression [67.7508230688415]
層分解ネットワークと光効果抑制ネットワークを統合した教師なし手法を提案する。
本手法は,夜間光効果の抑制と暗黒領域の強度向上において,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2022-07-21T16:10:24Z) - Nighttime Dehazing with a Synthetic Benchmark [147.21955799938115]
昼間の鮮明な画像から夜間のハズイ画像をシミュレートする3Rという新しい合成法を提案する。
実空間の光色を以前の経験的分布からサンプリングすることにより,現実的な夜間ハズイ画像を生成する。
実験結果は、画像の品質と実行時間の両方の観点から、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T02:16:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。