XNLP: An Interactive Demonstration System for Universal Structured NLP
- URL: http://arxiv.org/abs/2308.01846v2
- Date: Fri, 21 Jun 2024 15:26:05 GMT
- Title: XNLP: An Interactive Demonstration System for Universal Structured NLP
- Authors: Hao Fei, Meishan Zhang, Min Zhang, Tat-Seng Chua,
- Abstract summary: We propose an advanced XNLP demonstration platform, where we propose leveraging LLM to achieve universal XNLP, with one model for all with high generalizability.
Overall, our system advances in multiple aspects, including universal XNLP modeling, high performance, interpretability, scalability, interactivity, providing a unified platform for exploring diverse XNLP tasks in the community.
- Score: 90.42606755782786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Structured Natural Language Processing (XNLP) is an important subset of NLP that entails understanding the underlying semantic or syntactic structure of texts, which serves as a foundational component for many downstream applications. Despite certain recent efforts to explore universal solutions for specific categories of XNLP tasks, a comprehensive and effective approach for unifying all XNLP tasks long remains underdeveloped. In the meanwhile, while XNLP demonstration systems are vital for researchers exploring various XNLP tasks, existing platforms can be limited to, e.g., supporting few XNLP tasks, lacking interactivity and universalness. To this end, we propose an advanced XNLP demonstration platform, where we propose leveraging LLM to achieve universal XNLP, with one model for all with high generalizability. Overall, our system advances in multiple aspects, including universal XNLP modeling, high performance, interpretability, scalability, and interactivity, providing a unified platform for exploring diverse XNLP tasks in the community. XNLP is online: https://xnlp.haofei.vip
Related papers
- Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP [2.3499129784547663]
This study fills the gap by introducing a method for creating systematic and comprehensive monolingual NLP surveys.
Characterized by a structured search protocol, it can be used to select publications and organize them through a taxonomy of NLP tasks.
By applying our method, we conducted a systematic literature review of Greek NLP from 2012 to 2022.
arXiv Detail & Related papers (2024-07-13T12:01:52Z) - Beyond Good Intentions: Reporting the Research Landscape of NLP for
Social Good [115.1507728564964]
We introduce NLP4SG Papers, a scientific dataset with three associated tasks.
These tasks help identify NLP4SG papers and characterize the NLP4SG landscape.
We use state-of-the-art NLP models to address each of these tasks and use them on the entire ACL Anthology.
arXiv Detail & Related papers (2023-05-09T14:16:25Z) - HugNLP: A Unified and Comprehensive Library for Natural Language
Processing [14.305751154503133]
We introduce HugNLP, a library for natural language processing (NLP) with the prevalent backend of HuggingFace Transformers.
HugNLP consists of a hierarchical structure including models, processors and applications that unifies the learning process of pre-trained language models (PLMs) on different NLP tasks.
arXiv Detail & Related papers (2023-02-28T03:38:26Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
Deep learning has been the mainstream technique in natural language processing (NLP) area.
Deep learning requires many labeled data and is less generalizable across domains.
Meta-learning is an arising field in machine learning studying approaches to learn better algorithms.
arXiv Detail & Related papers (2022-05-03T13:58:38Z) - Graph Neural Networks for Natural Language Processing: A Survey [64.36633422999905]
We present a comprehensive overview onGraph Neural Networks (GNNs) for Natural Language Processing.
We propose a new taxonomy of GNNs for NLP, which organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models.
arXiv Detail & Related papers (2021-06-10T23:59:26Z) - Natural Language Processing 4 All (NLP4All): A New Online Platform for
Teaching and Learning NLP Concepts [0.0]
Natural Language Processing offers new insights into language data across almost all disciplines and domains.
The primary hurdles to widening participation in and use of these new research tools are a lack of coding skills in students across K-16, and in the population at large.
To broaden participation in NLP and improve NLP-literacy, we introduced a new tool web-based tool called Natural Language Processing 4 All (NLP4All)
The intended purpose of NLP4All is to help teachers facilitate learning with and about NLP, by providing easy-to-use interfaces to NLP-methods, data, and analyses.
arXiv Detail & Related papers (2021-05-28T09:57:22Z) - FedNLP: A Research Platform for Federated Learning in Natural Language
Processing [55.01246123092445]
We present the FedNLP, a research platform for federated learning in NLP.
FedNLP supports various popular task formulations in NLP such as text classification, sequence tagging, question answering, seq2seq generation, and language modeling.
Preliminary experiments with FedNLP reveal that there exists a large performance gap between learning on decentralized and centralized datasets.
arXiv Detail & Related papers (2021-04-18T11:04:49Z) - A Data-Centric Framework for Composable NLP Workflows [109.51144493023533]
Empirical natural language processing systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components.
We establish a unified open-source framework to support fast development of such sophisticated NLP in a composable manner.
arXiv Detail & Related papers (2021-03-02T16:19:44Z) - Meta-Embeddings for Natural Language Inference and Semantic Similarity
tasks [0.0]
Word Representations form the core component for almost all advanced Natural Language Processing (NLP) applications.
In this paper, we propose to use Meta Embedding derived from few State-of-the-Art (SOTA) models to efficiently tackle mainstream NLP tasks.
arXiv Detail & Related papers (2020-12-01T16:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.