Graph Neural Networks for Natural Language Processing: A Survey
- URL: http://arxiv.org/abs/2106.06090v1
- Date: Thu, 10 Jun 2021 23:59:26 GMT
- Title: Graph Neural Networks for Natural Language Processing: A Survey
- Authors: Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li,
Jian Pei, Bo Long
- Abstract summary: We present a comprehensive overview onGraph Neural Networks (GNNs) for Natural Language Processing.
We propose a new taxonomy of GNNs for NLP, which organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models.
- Score: 64.36633422999905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has become the dominant approach in coping with various tasks
in Natural LanguageProcessing (NLP). Although text inputs are typically
represented as a sequence of tokens, there isa rich variety of NLP problems
that can be best expressed with a graph structure. As a result, thereis a surge
of interests in developing new deep learning techniques on graphs for a large
numberof NLP tasks. In this survey, we present a comprehensive overview onGraph
Neural Networks(GNNs) for Natural Language Processing. We propose a new
taxonomy of GNNs for NLP, whichsystematically organizes existing research of
GNNs for NLP along three axes: graph construction,graph representation
learning, and graph based encoder-decoder models. We further introducea large
number of NLP applications that are exploiting the power of GNNs and summarize
thecorresponding benchmark datasets, evaluation metrics, and open-source codes.
Finally, we discussvarious outstanding challenges for making the full use of
GNNs for NLP as well as future researchdirections. To the best of our
knowledge, this is the first comprehensive overview of Graph NeuralNetworks for
Natural Language Processing.
Related papers
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
We propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of Graph networks (GNNs)
GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks.
In experiments on eleven real-world datasets, after being trained by neural prediction, GNNs significantly outperform their original performance on node classification, graph classification, and edge tasks.
arXiv Detail & Related papers (2024-07-16T03:59:18Z) - Graphs Unveiled: Graph Neural Networks and Graph Generation [0.0]
This paper provides a comprehensive overview of Graph Neural Networks (GNNs)
We discuss the applications of graph neural networks across various domains.
We present an advanced field in GNNs: graph generation.
arXiv Detail & Related papers (2024-03-18T14:37:27Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
A particular line of work proposed subgraph GNNs that use subgraph information to improve GNNs' expressivity and achieved great success.
Such effectivity sacrifices the efficiency of GNNs by enumerating all possible subgraphs.
We propose Magnetic Graph Neural Network (MAG-GNN), a reinforcement learning (RL) boosted GNN, to solve the problem.
arXiv Detail & Related papers (2023-10-29T20:32:21Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - Two-level Graph Neural Network [15.014364222532347]
We propose a novel GNN framework, referred to as the Two-level GNN (TL-GNN)
This merges subgraph-level information with node-level information.
Experiments show that TL-GNN outperforms existing GNNs and achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-01-03T02:15:20Z) - Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators [2.491032752533246]
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to their capability to model and learn from graph-structured data.
This paper aims to make two main contributions: a review of the field of GNNs is presented from the perspective of computing.
An in-depth analysis of current software and hardware acceleration schemes is provided.
arXiv Detail & Related papers (2020-09-30T22:29:27Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Graph Sequential Network for Reasoning over Sequences [38.766982479196926]
We consider a novel case where reasoning is needed over graphs built from sequences.
Existing GNN models fulfill this goal by first summarizing the node sequences into fixed-dimensional vectors, then applying GNN on these vectors.
We propose a new type of GNN called Graph Sequential Network (GSN), which features a new message passing algorithm based on co-attention between a node and each of its neighbors.
arXiv Detail & Related papers (2020-04-04T19:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.