EvalxNLP: A Framework for Benchmarking Post-Hoc Explainability Methods on NLP Models
- URL: http://arxiv.org/abs/2505.01238v1
- Date: Fri, 02 May 2025 13:00:05 GMT
- Title: EvalxNLP: A Framework for Benchmarking Post-Hoc Explainability Methods on NLP Models
- Authors: Mahdi Dhaini, Kafaite Zahra Hussain, Efstratios Zaradoukas, Gjergji Kasneci,
- Abstract summary: EvalxNLP is a Python framework for benchmarking state-of-the-art feature attribution methods for transformer-based NLP models.<n>EvalxNLP integrates eight widely recognized explainability techniques from the Explainable AI (XAI) literature.
- Score: 10.052306316269837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Natural Language Processing (NLP) models continue to evolve and become integral to high-stakes applications, ensuring their interpretability remains a critical challenge. Given the growing variety of explainability methods and diverse stakeholder requirements, frameworks that help stakeholders select appropriate explanations tailored to their specific use cases are increasingly important. To address this need, we introduce EvalxNLP, a Python framework for benchmarking state-of-the-art feature attribution methods for transformer-based NLP models. EvalxNLP integrates eight widely recognized explainability techniques from the Explainable AI (XAI) literature, enabling users to generate and evaluate explanations based on key properties such as faithfulness, plausibility, and complexity. Our framework also provides interactive, LLM-based textual explanations, facilitating user understanding of the generated explanations and evaluation outcomes. Human evaluation results indicate high user satisfaction with EvalxNLP, suggesting it is a promising framework for benchmarking explanation methods across diverse user groups. By offering a user-friendly and extensible platform, EvalxNLP aims at democratizing explainability tools and supporting the systematic comparison and advancement of XAI techniques in NLP.
Related papers
- Unifying VXAI: A Systematic Review and Framework for the Evaluation of Explainable AI [4.715895520943978]
Explainable AI (XAI) addresses this issue by providing human-understandable explanations of model behavior.<n>Despite the growing number of XAI methods, the field lacks standardized evaluation protocols and consensus on appropriate metrics.<n>We introduce a unified framework for the eValuation of XAI (VXAI)
arXiv Detail & Related papers (2025-06-18T12:25:37Z) - Explainability in Practice: A Survey of Explainable NLP Across Various Domains [2.494550479408289]
Review explores explainable NLP (XNLP) with a focus on its practical deployment and real-world applications.<n>The paper concludes by suggesting future research directions that could enhance the understanding and broader application of XNLP.
arXiv Detail & Related papers (2025-02-02T16:18:44Z) - A Statistical Framework for Ranking LLM-Based Chatbots [57.59268154690763]
We propose a statistical framework that incorporates key advancements to address specific challenges in pairwise comparison analysis.<n>First, we introduce a factored tie model that enhances the ability to handle groupings of human-judged comparisons.<n>Second, we extend the framework to model covariance tiers between competitors, enabling deeper insights into performance relationships.<n>Third, we resolve optimization challenges arising from parameter non-uniqueness by introducing novel constraints.
arXiv Detail & Related papers (2024-12-24T12:54:19Z) - SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
This paper introduces SCENE (Soft Counterfactual Evaluation for Natural language Explainability), a novel evaluation method.
By focusing on token-based substitutions, SCENE creates contextually appropriate and semantically meaningful Soft Counterfactuals.
SCENE provides valuable insights into the strengths and limitations of various XAI techniques.
arXiv Detail & Related papers (2024-08-08T16:36:24Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
This paper brings together various benchmark datasets and novel performance metrics in an initial benchmarking platform.
Our datasets incorporate ground truth explanations for class-conditional features.
This platform assesses the performance of post-hoc XAI methods in the quality of the explanations they produce.
arXiv Detail & Related papers (2024-05-20T14:16:06Z) - Challenges and Opportunities in Text Generation Explainability [12.089513278445704]
This paper outlines 17 challenges categorized into three groups that arise during the development and assessment of explainability methods.
These challenges encompass issues concerning tokenization, defining explanation similarity, determining token importance and prediction change metrics, the level of human intervention required, and the creation of suitable test datasets.
The paper illustrates how these challenges can be intertwined, showcasing new opportunities for the community.
arXiv Detail & Related papers (2024-05-14T09:44:52Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
Large Language Models (LLMs) have opened new avenues for assessing generated content quality, e.g., coherence, creativity, and context relevance.
We propose a coherent taxonomy for organizing existing LLM-based evaluation metrics, offering a structured framework to understand and compare these methods.
By discussing unresolved challenges, including bias, robustness, domain-specificity, and unified evaluation, this paper seeks to offer insights to researchers and advocate for fairer and more advanced NLG evaluation techniques.
arXiv Detail & Related papers (2024-01-13T15:59:09Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
One of the unsolved challenges in the field of Explainable AI (XAI) is determining how to most reliably estimate the quality of an explanation method.
We address this issue through a meta-evaluation of different quality estimators in XAI.
Our novel framework, MetaQuantus, analyses two complementary performance characteristics of a quality estimator.
arXiv Detail & Related papers (2023-02-14T18:59:02Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.