Multi-variable Hard Physical Constraints for Climate Model Downscaling
- URL: http://arxiv.org/abs/2308.01868v1
- Date: Wed, 2 Aug 2023 11:42:02 GMT
- Title: Multi-variable Hard Physical Constraints for Climate Model Downscaling
- Authors: Jose Gonz\'alez-Abad, \'Alex Hern\'andez-Garc\'ia, Paula Harder, David
Rolnick, Jos\'e Manuel Guti\'errez
- Abstract summary: Global Climate Models (GCMs) are the primary tool to simulate climate evolution and assess the impacts of climate change.
They often operate at a coarse spatial resolution that limits their accuracy in reproducing local-scale phenomena.
This study investigates the scope of this problem and, through an application on temperature, lays the foundation for a framework introducing multi-variable hard constraints.
- Score: 17.402215838651557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Global Climate Models (GCMs) are the primary tool to simulate climate
evolution and assess the impacts of climate change. However, they often operate
at a coarse spatial resolution that limits their accuracy in reproducing
local-scale phenomena. Statistical downscaling methods leveraging deep learning
offer a solution to this problem by approximating local-scale climate fields
from coarse variables, thus enabling regional GCM projections. Typically,
climate fields of different variables of interest are downscaled independently,
resulting in violations of fundamental physical properties across
interconnected variables. This study investigates the scope of this problem
and, through an application on temperature, lays the foundation for a framework
introducing multi-variable hard constraints that guarantees physical
relationships between groups of downscaled climate variables.
Related papers
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
Given coarser-resolution projections from global climate models or satellite data, the downscaling problem aims to estimate finer-resolution regional climate data.
This problem is societally crucial for effective adaptation, mitigation, and resilience against significant risks from climate change.
We propose a novel Kriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM) to capture spatial variability while preserving fine-scale features.
arXiv Detail & Related papers (2024-10-21T04:24:10Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations [8.71735078449217]
This paper proposes a unified downscaling approach leveraging meta-learning.
We trained variables consisted of temperature, wind, surface pressure and total precipitation from ERA5 and GFS.
The proposed method can be extended to downscale convective precipitation, potential, energy height, humidity CFS, S2S and CMIP6 at differenttemporal scales.
arXiv Detail & Related papers (2024-04-26T06:31:44Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Reducing Uncertainty in Sea-level Rise Prediction: A
Spatial-variability-aware Approach [4.32583920500711]
This paper proposes a zonal regression model which addresses spatial variability and model inter-dependency.
Experimental results show more reliable predictions using the weights learned via this approach on a regional scale.
arXiv Detail & Related papers (2023-10-19T02:13:38Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
Climate models play a crucial role in understanding the effect of environmental changes on climate to help mitigate climate risks and inform decisions.
Large global climate models such as the Community Earth System Model (CESM), are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice.
Our work uses probabilistics like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional and man-made data.
arXiv Detail & Related papers (2020-10-08T15:16:16Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.