Digital twin brain: a bridge between biological intelligence and
artificial intelligence
- URL: http://arxiv.org/abs/2308.01941v1
- Date: Thu, 3 Aug 2023 03:36:22 GMT
- Title: Digital twin brain: a bridge between biological intelligence and
artificial intelligence
- Authors: Hui Xiong, Congying Chu, Lingzhong Fan, Ming Song, Jiaqi Zhang, Yawei
Ma, Ruonan Zheng, Junyang Zhang, Zhengyi Yang, Tianzi Jiang
- Abstract summary: We propose the Digital Twin Brain (DTB) as a transformative platform that bridges the gap between biological and artificial intelligence.
The DTB consists of three core elements: the brain structure that is fundamental to the twinning process, bottom-layer models to generate brain functions, and its wide spectrum of applications.
- Score: 12.55159053727258
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, advances in neuroscience and artificial intelligence have
paved the way for unprecedented opportunities for understanding the complexity
of the brain and its emulation by computational systems. Cutting-edge
advancements in neuroscience research have revealed the intricate relationship
between brain structure and function, while the success of artificial neural
networks highlights the importance of network architecture. Now is the time to
bring them together to better unravel how intelligence emerges from the brain's
multiscale repositories. In this review, we propose the Digital Twin Brain
(DTB) as a transformative platform that bridges the gap between biological and
artificial intelligence. It consists of three core elements: the brain
structure that is fundamental to the twinning process, bottom-layer models to
generate brain functions, and its wide spectrum of applications. Crucially,
brain atlases provide a vital constraint, preserving the brain's network
organization within the DTB. Furthermore, we highlight open questions that
invite joint efforts from interdisciplinary fields and emphasize the
far-reaching implications of the DTB. The DTB can offer unprecedented insights
into the emergence of intelligence and neurological disorders, which holds
tremendous promise for advancing our understanding of both biological and
artificial intelligence, and ultimately propelling the development of
artificial general intelligence and facilitating precision mental healthcare.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Digital Twin Brain: a simulation and assimilation platform for whole
human brain [14.320205840701226]
We present a computing platform named digital twin brain (DTB) that can simulate spiking neuronal networks of the whole human brain scale.
In comparison to most brain simulations with a homogeneous global structure, we highlight that the sparseness, couplingness and heterogeneity in the sMRI, DTI and PET data of the brain has an essential impact on the efficiency of brain simulation.
arXiv Detail & Related papers (2023-08-02T15:56:43Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
A kind of spiking neural network with biological interpretability is gradually receiving wide attention.
This review hopes to attract different researchers and advance the development of brain-inspired intelligence and artificial intelligence.
arXiv Detail & Related papers (2022-04-09T09:34:34Z) - To Root Artificial Intelligence Deeply in Basic Science for a New
Generation of AI [1.0152838128195467]
One of the ambitions of artificial intelligence is to root artificial intelligence deeply in basic science.
This paper presents the grand challenges of artificial intelligence research for the next 20 years.
arXiv Detail & Related papers (2020-09-11T22:38:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.