Digital Twin Brain: a simulation and assimilation platform for whole
human brain
- URL: http://arxiv.org/abs/2308.01241v1
- Date: Wed, 2 Aug 2023 15:56:43 GMT
- Title: Digital Twin Brain: a simulation and assimilation platform for whole
human brain
- Authors: Wenlian Lu, Longbin Zeng, Xin Du, Wenyong Zhang, Shitong Xiang, Huarui
Wang, Jiexiang Wang, Mingda Ji, Yubo Hou, Minglong Wang, Yuhao Liu, Zhongyu
Chen, Qibao Zheng, Ningsheng Xu, Jianfeng Feng
- Abstract summary: We present a computing platform named digital twin brain (DTB) that can simulate spiking neuronal networks of the whole human brain scale.
In comparison to most brain simulations with a homogeneous global structure, we highlight that the sparseness, couplingness and heterogeneity in the sMRI, DTI and PET data of the brain has an essential impact on the efficiency of brain simulation.
- Score: 14.320205840701226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a computing platform named digital twin brain (DTB)
that can simulate spiking neuronal networks of the whole human brain scale and
more importantly, a personalized biological brain structure. In comparison to
most brain simulations with a homogeneous global structure, we highlight that
the sparseness, couplingness and heterogeneity in the sMRI, DTI and PET data of
the brain has an essential impact on the efficiency of brain simulation, which
is proved from the scaling experiments that the DTB of human brain simulation
is communication-intensive and memory-access intensive computing systems rather
than computation-intensive. We utilize a number of optimization techniques to
balance and integrate the computation loads and communication traffics from the
heterogeneous biological structure to the general GPU-based HPC and achieve
leading simulation performance for the whole human brain-scaled spiking
neuronal networks. On the other hand, the biological structure, equipped with a
mesoscopic data assimilation, enables the DTB to investigate brain cognitive
function by a reverse-engineering method, which is demonstrated by a digital
experiment of visual evaluation on the DTB. Furthermore, we believe that the
developing DTB will be a promising powerful platform for a large of research
orients including brain-inspiredintelligence, rain disease medicine and
brain-machine interface.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A differentiable brain simulator bridging brain simulation and
brain-inspired computing [3.5874544981360987]
Brain simulation builds dynamical models to mimic the structure and functions of the brain.
Brain-inspired computing develops intelligent systems by learning from the structure and functions of the brain.
BrainPy is a differentiable brain simulator developed using JAX and XLA.
arXiv Detail & Related papers (2023-11-09T02:47:38Z) - Digital twin brain: a bridge between biological intelligence and
artificial intelligence [12.55159053727258]
We propose the Digital Twin Brain (DTB) as a transformative platform that bridges the gap between biological and artificial intelligence.
The DTB consists of three core elements: the brain structure that is fundamental to the twinning process, bottom-layer models to generate brain functions, and its wide spectrum of applications.
arXiv Detail & Related papers (2023-08-03T03:36:22Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
We propose a novel interpretable transformer-based model for joint hierarchical cluster identification and brain network classification.
With the help of hierarchical clustering, the model achieves increased accuracy and reduced runtime complexity while providing plausible insight into the functional organization of brain regions.
arXiv Detail & Related papers (2023-05-06T22:14:13Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.