論文の概要: Using POMDP-based Approach to Address Uncertainty-Aware Adaptation for
Self-Protecting Software
- arxiv url: http://arxiv.org/abs/2308.02134v2
- Date: Wed, 9 Aug 2023 14:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 15:20:48.043944
- Title: Using POMDP-based Approach to Address Uncertainty-Aware Adaptation for
Self-Protecting Software
- Title(参考訳): 自己保護ソフトウェアに対する不確実性認識適応へのpomdp法の適用
- Authors: Ryan Liu, Ladan Tahvildari
- Abstract要約: 移動目標防衛(MTD)は、攻撃者が脆弱性を悪用することを困難にするため、ソフトウェア特性を変更する。
既存のMTD意思決定ソリューションは、モデルパラメータの不確実性を無視し、自己適応を欠いている。
本稿では,部分観測可能なマルコフ決定プロセスとベイズ学習に基づく不確実性と自己適応型MTD決定エンジンを提案する。
- 参考スコア(独自算出の注目度): 4.459996749171579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The threats posed by evolving cyberattacks have led to increased research
related to software systems that can self-protect. One topic in this domain is
Moving Target Defense (MTD), which changes software characteristics in the
protected system to make it harder for attackers to exploit vulnerabilities.
However, MTD implementation and deployment are often impacted by run-time
uncertainties, and existing MTD decision-making solutions have neglected
uncertainty in model parameters and lack self-adaptation. This paper aims to
address this gap by proposing an approach for an uncertainty-aware and
self-adaptive MTD decision engine based on Partially Observable Markov Decision
Process and Bayesian Learning techniques. The proposed approach considers
uncertainty in both state and model parameters; thus, it has the potential to
better capture environmental variability and improve defense strategies. A
preliminary study is presented to highlight the potential effectiveness and
challenges of the proposed approach.
- Abstract(参考訳): サイバー攻撃の進化によって引き起こされる脅威は、自己保護が可能なソフトウェアシステムに関する研究の増加につながった。
このドメインの1つのトピックは移動目標防衛(MTD)であり、攻撃者が脆弱性を悪用することを難しくするため、保護されたシステムのソフトウェア特性を変更する。
しかし、MTDの実装と展開は、しばしば実行時の不確実性の影響を受け、既存のMTD決定ソリューションはモデルパラメータの不確実性を無視し、自己適応を欠いている。
本稿では,部分観測可能なマルコフ決定プロセスとベイズ学習に基づく不確実性と自己適応型MTD決定エンジンのアプローチを提案する。
提案手法は, 状態パラメータとモデルパラメータの両面での不確実性を考慮し, 環境変動の把握と防衛戦略の改善が期待できる。
提案手法の有効性と課題を明らかにするための予備研究が提案されている。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - A Factored MDP Approach To Moving Target Defense With Dynamic Threat Modeling and Cost Efficiency [20.367958942737523]
移動目標防衛(MTD)は、進化するサイバー脅威に対抗するための、積極的な動的枠組みとして登場した。
本稿では,事前に定義された攻撃者の支払いに依存しないマルコフ決定プロセス(MDP)モデルを用いたMTDの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-16T09:38:59Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
本稿では、サイバー攻撃(キャンプ)に対する組織の防御効果を定量化するための、脅威に富んだ確率的アプローチであるサイバー抵抗指数(CRI)を紹介する。
Threat-Intelligence Based Security Assessment (TIBSA) の方法論に基づいて、複雑な脅威のインテリジェンスを、ストックマーケットインデックスに似た、実行可能な統一されたメトリクスに変換する数学的モデルを提示します。
論文 参考訳(メタデータ) (2024-06-27T17:51:48Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
広く採用されているCMDPモデルは予測のリスクを制約しており、長い尾の州で危険な行動を起こす余地がある。
安全クリティカルな領域では、そのような行動は破滅的な結果をもたらす可能性がある。
本稿では,目標を最大化するタスク報酬を適応的に抑制する新しい手法であるObjective Suppressionを提案する。
論文 参考訳(メタデータ) (2024-02-23T23:22:06Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
メタ学習アルゴリズムであるF-PACOHを構築し,データ不足の設定において確実な定量化を実現する。
コアコントリビューションとして、安全に適合した事前をデータ駆動で選択するための新しいフレームワークを開発する。
ベンチマーク関数と高精度動作系において,我々のメタ学習先行が安全なBOアプローチの収束を加速することを示す。
論文 参考訳(メタデータ) (2022-10-03T08:38:38Z) - Deep VULMAN: A Deep Reinforcement Learning-Enabled Cyber Vulnerability
Management Framework [4.685954926214926]
サイバー脆弱性管理は、コンピュータやネットワークシステムにおけるサイバー攻撃から組織を保護するサイバーセキュリティ運用センター(CSOC)の重要な機能である。
現在のアプローチは決定論的であり、緩和のための脆弱性の優先順位付けや選択を行う際の将来の不確実性を考慮していない。
本稿では,サイバー脆弱性管理プロセスにおいて,このギャップを埋めるために,深層強化学習エージェントと整数プログラミングによる新しいフレームワークであるDeep VULMANを提案する。
論文 参考訳(メタデータ) (2022-08-03T22:32:48Z) - Reinforcement Learning with a Terminator [80.34572413850186]
我々は, TerMDP のパラメータを学習し, 推定問題の構造を活用し, 状態ワイドな信頼境界を提供する。
我々はこれらを用いて証明可能な効率のよいアルゴリズムを構築し、終端を考慮し、その後悔を抑える。
論文 参考訳(メタデータ) (2022-05-30T18:40:28Z) - Towards Assessing and Characterizing the Semantic Robustness of Face
Recognition [55.258476405537344]
ディープニューラルネットワーク(DNN)に基づく顔認識モデル(FRM)がこの脆弱性を継承する。
本研究では,入力に対する意味摂動に対するFRMの頑健性を評価し,評価する手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T12:22:09Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement Learning (RL)は、様々なシーケンシャルな意思決定タスクに対して最適なポリシーを学ぶ上で、有望なパフォーマンスを示している。
多くの現実世界のRL問題において、主な目的を最適化する以外に、エージェントは一定のレベルの安全性を満たすことが期待されている。
これらの制約に対処するために,リャプノフに基づく不確実性を考慮した安全なRLモデルを提案する。
論文 参考訳(メタデータ) (2021-07-29T13:08:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。