論文の概要: Dynamic Vulnerability Criticality Calculator for Industrial Control Systems
- arxiv url: http://arxiv.org/abs/2404.16854v1
- Date: Wed, 20 Mar 2024 09:48:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:39:16.540702
- Title: Dynamic Vulnerability Criticality Calculator for Industrial Control Systems
- Title(参考訳): 産業制御システムのための動的脆弱性臨界計算器
- Authors: Pavlos Cheimonidis, Kontantinos Rantos,
- Abstract要約: 本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The convergence of information and communication technologies has introduced new and advanced capabilities to Industrial Control Systems. However, concurrently, it has heightened their vulnerability to cyber attacks. Consequently, the imperative for new security methods has emerged as a critical need for these organizations to effectively identify and mitigate potential threats. This paper introduces an innovative approach by proposing a dynamic vulnerability criticality calculator. Our methodology encompasses the analysis of environmental topology and the effectiveness of deployed security mechanisms, coupled with the utilization of the Common Vulnerability Scoring System framework to adjust detected vulnerabilities based on the specific environment. Moreover, it evaluates the quantity of vulnerabilities and their interdependencies within each asset. Additionally, our approach integrates these factors into a comprehensive Fuzzy Cognitive Map model, incorporating attack paths to holistically assess the overall vulnerability score. To validate the efficacy of our proposed method, we present a relative case study alongside several modified scenarios, demonstrating its effectiveness in practical applications.
- Abstract(参考訳): 情報通信技術の収束により,産業制御システムに新たな高度な機能が導入されている。
しかし同時に、サイバー攻撃に対する脆弱性も高まった。
その結果、新たなセキュリティ手法の衝動は、潜在的な脅威を効果的に識別し軽減するために、これらの組織にとって重要な必要性として現れてきた。
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, デプロイされたセキュリティ機構の有効性と, 特定の環境に基づいて検出された脆弱性を調整するための共通脆弱性検査システム(Common Vulnerability Scoring System)フレームワークの利用を併用する。
さらに、各資産内の脆弱性の量とその相互依存性を評価する。
さらに,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
提案手法の有効性を検証するために, 提案手法の有効性を実証し, 提案手法の有効性を実証する。
関連論文リスト
- ADAPT: A Game-Theoretic and Neuro-Symbolic Framework for Automated Distributed Adaptive Penetration Testing [13.101825065498552]
AIを医療などの現代的なクリティカルインフラストラクチャシステムに統合することで、新たな脆弱性が導入された。
ADAPTは、自動分散適応浸透テストのためのゲーム理論およびニューロシンボリックフレームワークである。
論文 参考訳(メタデータ) (2024-10-31T21:32:17Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Automated Phishing Detection Using URLs and Webpages [35.66275851732625]
LLMエージェントフレームワークの開発により,従来の参照型フィッシング検出の制約に対処する。
このエージェントは、Large Language Modelsを利用して、積極的にオンライン情報を取得し、活用する。
我々の手法は0.945の精度で達成され、既存の解(DynaPhish)を0.445で大幅に上回っている。
論文 参考訳(メタデータ) (2024-08-03T05:08:27Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
本研究では,グラフ解析手法と改良型グラフ注意畳み込みニューラルネットワーク(GAT)モデルを提案する。
制御フローグラフを分析して、脆弱性の修正を目的とした依存性のアップグレードから発生するアプリケーションの変更をプロファイルします。
結果は、コード脆弱性のリレーショナルダイナミクスに関する微妙な洞察を提供する上で、強化されたGATモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-03-08T02:01:47Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Automated Security Assessment for the Internet of Things [6.690766107366799]
我々はIoTネットワークの自動セキュリティアセスメントフレームワークを提案する。
我々のフレームワークは、まず機械学習と自然言語処理を利用して脆弱性記述を分析する。
このセキュリティモデルは、潜在的な攻撃経路をキャプチャすることで、IoTネットワークのセキュリティを自動的に評価する。
論文 参考訳(メタデータ) (2021-09-09T04:42:24Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。