論文の概要: Generative Priors for MRI Reconstruction Trained from Magnitude-Only Images Using Phase Augmentation
- arxiv url: http://arxiv.org/abs/2308.02340v2
- Date: Sat, 16 Nov 2024 00:39:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:40.188086
- Title: Generative Priors for MRI Reconstruction Trained from Magnitude-Only Images Using Phase Augmentation
- Title(参考訳): 位相増倍法によるMRI画像からのMRI画像再構成の先駆的評価
- Authors: Guanxiong Luo, Xiaoqing Wang, Mortiz Blumenthal, Martin Schilling, Erik Hans Ulrich Rauf, Raviteja Kotikalapudi, Niels Focke, Martin Uecker,
- Abstract要約: 本稿では,大域のみの画像から汎用的でロバストな生成画像を生成するワークフローを提案する。
次に、前者は画像品質を改善するために再構成の正規化に使用することができる。
- 参考スコア(独自算出の注目度): 4.0619281020014615
- License:
- Abstract: Purpose: In this work, we present a workflow to construct generic and robust generative image priors from magnitude-only images. The priors can then be used for regularization in reconstruction to improve image quality. Methods: The workflow begins with the preparation of training datasets from magnitude-only MR images. This dataset is then augmented with phase information and used to train generative priors of complex images. Finally, trained priors are evaluated using both linear and nonlinear reconstruction for compressed sensing parallel imaging with various undersampling schemes. Results: The results of our experiments demonstrate that priors trained on complex images outperform priors trained only on magnitude images. Additionally, a prior trained on a larger dataset exhibits higher robustness. Finally, we show that the generative priors are superior to L1 -wavelet regularization for compressed sensing parallel imaging with high undersampling. Conclusion: These findings stress the importance of incorporating phase information and leveraging large datasets to raise the performance and reliability of the generative priors for MRI reconstruction. Phase augmentation makes it possible to use existing image databases for training.
- Abstract(参考訳): 目的:本研究では,大域のみの画像から,汎用的で堅牢な生成画像を生成するワークフローを提案する。
次に、前者は画像品質を改善するために再構成の正規化に使用することができる。
メソッド: ワークフローは、マグニチュードのみのMR画像からデータセットをトレーニングする準備から始まります。
このデータセットは、フェーズ情報で拡張され、複雑な画像の生成前のトレーニングに使用される。
最後に, 各種アンダーサンプリング方式を用いて, 線形および非線形再構成を併用した, 圧縮されたセンシング並列画像の評価を行った。
結果: 実験の結果, 複雑な画像で訓練された事前訓練は, 等級画像でのみ訓練された先行訓練よりも優れていた。
さらに、より大きなデータセットでトレーニングされた事前は、より高い堅牢性を示す。
最後に,L1-wavelet正則化よりも高アンダーサンプリングを併用した圧縮型シンセサイレント・パラレルイメージングが優れていることを示す。
結論: これらの知見は, 位相情報の導入の重要性を強調し, 大規模なデータセットを活用して, 再生前のMRI再生の性能と信頼性を高めた。
フェーズ拡張により、既存のイメージデータベースをトレーニングに使用できるようになる。
関連論文リスト
- Chasing Better Deep Image Priors between Over- and Under-parameterization [63.8954152220162]
そこで本研究では,DNN固有の空間性を利用して,LIP(lottery image prior)を新たに検討する。
LIPworksは、コンパクトなモデルサイズでディープデコーダを著しく上回っている。
また、LIPを圧縮センシング画像再構成に拡張し、事前学習したGANジェネレータを前者として使用する。
論文 参考訳(メタデータ) (2024-10-31T17:49:44Z) - Realistic Extreme Image Rescaling via Generative Latent Space Learning [51.85790402171696]
極端画像再スケーリングのためのLatent Space Based Image Rescaling (LSBIR) という新しいフレームワークを提案する。
LSBIRは、訓練済みのテキスト-画像拡散モデルによって学習された強力な自然画像の先行を効果的に活用し、リアルなHR画像を生成する。
第1段階では、擬似非可逆エンコーダデコーダは、HR画像の潜在特徴とターゲットサイズのLR画像との双方向マッピングをモデル化する。
第2段階では、第1段階からの再構成された特徴を事前訓練された拡散モデルにより洗練し、より忠実で視覚的に喜ぶ詳細を生成する。
論文 参考訳(メタデータ) (2024-08-17T09:51:42Z) - FastMIM: Expediting Masked Image Modeling Pre-training for Vision [65.47756720190155]
FastMIMは低解像度の入力画像で視覚バックボーンを事前訓練するためのフレームワークである。
入力画像のRGB値の代わりに、向き付け勾配のヒストグラム(Histograms of Oriented Gradients,HOG)機能を再構成する。
ViT-B/Swin-Bをバックボーンとし、ImageNet-1Kで83.8%/84.1%のトップ1の精度を達成できる。
論文 参考訳(メタデータ) (2022-12-13T14:09:32Z) - Adaptive Diffusion Priors for Accelerated MRI Reconstruction [0.9895793818721335]
ディープMRI再構成は、完全にサンプリングされたデータと整合したイメージを復元するために、アンサンプされた取得をデエイリアス化する条件付きモデルで一般的に行われる。
非条件モデルは、画像演算子に関連する領域シフトに対する信頼性を向上させるために、演算子から切り離された生成画像の事前を学習する。
本稿では,MRI 再構成に先立つ適応拡散 AdaDiff を提案する。
論文 参考訳(メタデータ) (2022-07-12T22:45:08Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
我々はTransformerベースのMR画像超解像フレームワークを構築するための初期の取り組みを構築した。
我々は、高周波構造とモード間コンテキストを含む2つの領域先行について考察する。
我々は,Cross-modality High- frequency Transformer (Cohf-T)と呼ばれる新しいTransformerアーキテクチャを構築し,低解像度画像の超解像化を実現する。
論文 参考訳(メタデータ) (2022-03-29T07:56:55Z) - Federated Learning of Generative Image Priors for MRI Reconstruction [5.3963856146595095]
マルチインスティカルな取り組みは、画像データのクロスサイト共有中にプライバシー上のリスクが発生するにもかかわらず、ディープMRI再構成モデルのトレーニングを容易にする。
FedGIMP (FedGIMP) を用いた新しいMRI再構成法を提案する。
FedGIMPは、2段階のアプローチを利用する: 生成MRIのクロスサイト学習と、イメージングオペレーターの主題固有の注入である。
論文 参考訳(メタデータ) (2022-02-08T22:17:57Z) - Enhanced Transfer Learning Through Medical Imaging and Patient
Demographic Data Fusion [0.0]
画像特徴と関連する非画像データとを組み合わせた医療画像データの分類における性能向上について検討した。
特徴抽出器として直接使用し,対象領域に微調整を施したImageNetで事前訓練したネットワークを用いた転送学習を利用する。
論文 参考訳(メタデータ) (2021-11-29T09:11:52Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Data augmentation for deep learning based accelerated MRI reconstruction
with limited data [46.44703053411933]
ディープニューラルネットワークは、画像復元と再構成タスクの非常に成功したツールとして登場した。
最先端のパフォーマンスを達成するためには、大規模で多様な画像集合の訓練が重要であると考えられる。
本稿では,MRI画像再構成の高速化のためのデータ拡張のためのパイプラインを提案し,必要なトレーニングデータを削減する上での有効性について検討する。
論文 参考訳(メタデータ) (2021-06-28T19:08:46Z) - Pre-Trained Image Processing Transformer [95.93031793337613]
我々は、新しい事前学習モデル、すなわち、画像処理変換器(IPT)を開発する。
本稿では、よく知られたImageNetベンチマークを用いて、大量の画像ペアを生成する。
IPTモデルは、これらの画像をマルチヘッドとマルチテールでトレーニングする。
論文 参考訳(メタデータ) (2020-12-01T09:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。