T-UNet: Triplet UNet for Change Detection in High-Resolution Remote
Sensing Images
- URL: http://arxiv.org/abs/2308.02356v1
- Date: Fri, 4 Aug 2023 14:44:11 GMT
- Title: T-UNet: Triplet UNet for Change Detection in High-Resolution Remote
Sensing Images
- Authors: Huan Zhong and Chen Wu
- Abstract summary: Currently, most change detection methods are based on Siamese network structure or early fusion structure.
We propose a novel network, Triplet UNet(T-UNet), based on a three-branch encoder, which is capable to simultaneously extract the object features and the change features.
In the decoder stage, we introduce the channel attention mechanism (CAM) and spatial attention mechanism (SAM) to fully mine and integrate detailed textures information.
- Score: 5.849243433046327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing image change detection aims to identify the differences
between images acquired at different times in the same area. It is widely used
in land management, environmental monitoring, disaster assessment and other
fields. Currently, most change detection methods are based on Siamese network
structure or early fusion structure. Siamese structure focuses on extracting
object features at different times but lacks attention to change information,
which leads to false alarms and missed detections. Early fusion (EF) structure
focuses on extracting features after the fusion of images of different phases
but ignores the significance of object features at different times for
detecting change details, making it difficult to accurately discern the edges
of changed objects. To address these issues and obtain more accurate results,
we propose a novel network, Triplet UNet(T-UNet), based on a three-branch
encoder, which is capable to simultaneously extract the object features and the
change features between the pre- and post-time-phase images through triplet
encoder. To effectively interact and fuse the features extracted from the three
branches of triplet encoder, we propose a multi-branch spatial-spectral
cross-attention module (MBSSCA). In the decoder stage, we introduce the channel
attention mechanism (CAM) and spatial attention mechanism (SAM) to fully mine
and integrate detailed textures information at the shallow layer and semantic
localization information at the deep layer.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - STNet: Spatial and Temporal feature fusion network for change detection
in remote sensing images [5.258365841490956]
We propose STNet, a remote sensing change detection network based on spatial and temporal feature fusions.
Experimental results on three benchmark datasets for RSCD demonstrate that the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-04-22T14:40:41Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - Towards Complex Backgrounds: A Unified Difference-Aware Decoder for
Binary Segmentation [4.6932442139663015]
A new unified dual-branch decoder paradigm named the difference-aware decoder is proposed in this paper.
The difference-aware decoder imitates the human eye in three stages using the multi-level features output by the encoder.
The results demonstrate that the difference-aware decoder can achieve a higher accuracy than the other state-of-the-art binary segmentation methods.
arXiv Detail & Related papers (2022-10-27T03:45:29Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.