Brain MRI Segmentation using Template-Based Training and Visual
Perception Augmentation
- URL: http://arxiv.org/abs/2308.02363v1
- Date: Fri, 4 Aug 2023 14:53:20 GMT
- Title: Brain MRI Segmentation using Template-Based Training and Visual
Perception Augmentation
- Authors: Fang-Cheng Yeh
- Abstract summary: We introduce a template-based training method to train a 3D U-Net model from scratch using only one population-averaged brain MRI template and its associated segmentation label.
We trained 3D U-Net models for mouse, rat, marmoset, rhesus, and human brain MRI to achieve segmentation tasks such as skull-stripping, brain segmentation, and tissue probability mapping.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models usually require sufficient training data to achieve high
accuracy, but obtaining labeled data can be time-consuming and labor-intensive.
Here we introduce a template-based training method to train a 3D U-Net model
from scratch using only one population-averaged brain MRI template and its
associated segmentation label. The process incorporated visual perception
augmentation to enhance the model's robustness in handling diverse image inputs
and mitigating overfitting. Leveraging this approach, we trained 3D U-Net
models for mouse, rat, marmoset, rhesus, and human brain MRI to achieve
segmentation tasks such as skull-stripping, brain segmentation, and tissue
probability mapping. This tool effectively addresses the limited availability
of training data and holds significant potential for expanding deep learning
applications in image analysis, providing researchers with a unified solution
to train deep neural networks with only one image sample.
Related papers
- μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation [2.012378666405002]
X-ray computed microtomography (mu-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples.
extracting relevant information from 3D images requires semantic segmentation of the regions of interest.
We propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus.
arXiv Detail & Related papers (2024-06-24T15:29:08Z) - Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
The objective is to leverage state-of-the-art convolutional neural networks (CNNs) on a large dataset of brain MRI scans for segmentation.
The proposed methodology applies pre-processing techniques for enhanced performance and generalizability.
arXiv Detail & Related papers (2024-04-06T15:09:49Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
We propose a rendering module to augment the training data by synthesizing images with virtual-depths.
The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images.
Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task.
arXiv Detail & Related papers (2021-07-28T11:00:47Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z) - Searching Learning Strategy with Reinforcement Learning for 3D Medical
Image Segmentation [15.059891142682117]
We propose an automated searching approach for the optimal training strategy with reinforcement learning.
The proposed approach is validated on several tasks of 3D medical image segmentation.
arXiv Detail & Related papers (2020-06-10T14:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.