論文の概要: ECG classification using Deep CNN and Gramian Angular Field
- arxiv url: http://arxiv.org/abs/2308.02395v1
- Date: Tue, 25 Jul 2023 13:26:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 01:47:43.224593
- Title: ECG classification using Deep CNN and Gramian Angular Field
- Title(参考訳): Deep CNNとGramian Angular Fieldを用いた心電図分類
- Authors: Youssef Elmir, Yassine Himeur and Abbes Amira
- Abstract要約: 提案手法は,グラム角場変換を用いた時間周波数1Dベクトルを2次元画像に変換することに基づく。
その結果,異常検出では97.47%,98.65%の分類精度が得られた。
これは、心血管疾患の診断と治療、および異常の検出に重要な意味を持つ。
- 参考スコア(独自算出の注目度): 2.685668802278155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper study provides a novel contribution to the field of signal
processing and DL for ECG signal analysis by introducing a new feature
representation method for ECG signals. The proposed method is based on
transforming time frequency 1D vectors into 2D images using Gramian Angular
Field transform. Moving on, the classification of the transformed ECG signals
is performed using Convolutional Neural Networks (CNN). The obtained results
show a classification accuracy of 97.47% and 98.65% for anomaly detection.
Accordingly, in addition to improving the classification performance compared
to the state-of-the-art, the feature representation helps identify and
visualize temporal patterns in the ECG signal, such as changes in heart rate,
rhythm, and morphology, which may not be apparent in the original signal. This
has significant implications in the diagnosis and treatment of cardiovascular
diseases and detection of anomalies.
- Abstract(参考訳): 本稿では,ECG信号の新たな特徴表現法を導入することにより,ECG信号解析における信号処理分野とDLに新たな貢献をもたらす。
提案手法は,グラム角場変換を用いた時間周波数1Dベクトルを2次元画像に変換することに基づく。
次に、変換されたECG信号の分類を畳み込みニューラルネットワーク(CNN)を用いて行う。
その結果,異常検出では97.47%,98.65%の分類精度が得られた。
したがって、最先端と比較して分類性能を向上させることに加えて、特徴表現は、元の信号では見えない心拍数、リズム、形態の変化など、心電図信号の時間的パターンを識別・可視化するのに役立つ。
これは心血管疾患の診断と治療と異常の検出に重要な意味を持つ。
関連論文リスト
- ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers [6.882042556551613]
本稿では,1次元畳み込み層と変圧器アーキテクチャを組み合わせた深層学習手法を提案する。
次に、この埋め込みをトランスネットワークの入力として使用し、ECG信号をデノナイズするトランスの能力を高める。
論文 参考訳(メタデータ) (2024-07-12T03:13:52Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
本稿では,異常検出を利用したトレーニング用心電図データのみを用いた不健康状態の同定手法を提案する。
本稿では,心電図信号の異常検出に特化して設計されたTSRNet(Multimodal Time and Spectrogram Restoration Network)を提案する。
論文 参考訳(メタデータ) (2023-12-15T20:27:38Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Robustness of convolutional neural networks to physiological ECG noise [0.0]
心電図(ECG)は、医療において最も普及している診断ツールの一つであり、心血管疾患の診断を支援する。
深層学習法は、心電図信号から障害の徴候を検出する手法として成功し、普及している。
生理的ECGノイズを含む様々な要因に対するこれらの手法の堅牢性には、オープンな疑問がある。
我々は、SPAR(Symmetric Projection Attractor Reconstruction)と頭蓋骨画像変換を適用する前に、ECGデータセットのクリーンでノイズの多いバージョンを生成する。
事前訓練された畳み込みニューラルネットワークは、これらの画像変換を分類するために転送学習を用いて訓練される。
論文 参考訳(メタデータ) (2021-08-02T08:16:32Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
ディープニューラルネットワークは、心電図信号を追跡するための一般的なテクニックとなり、人間の専門家より優れています。
GANアーキテクチャは、敵ECG信号を合成し、既存のトレーニングデータを増やすために近年研究されている。
本稿では,心電図信号を同時に生成し,心的異常を検出するための条件生成広告ネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T02:53:14Z) - Multi-level Stress Assessment Using Multi-domain Fusion of ECG Signal [1.52292571922932]
複数のストレスレベルを持つデータセットを導入し、新しいディープラーニングアプローチを用いてこれらのレベルを分類する。
信号画像は時間周波数領域と周波数領域に変換してマルチモーダル・マルチドメイン化した。
提案された融合フレームワークとECG信号による画像変換により、平均精度は85.45%に達する。
論文 参考訳(メタデータ) (2020-08-12T18:08:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。