論文の概要: Mental Workload Estimation with Electroencephalogram Signals by
Combining Multi-Space Deep Models
- arxiv url: http://arxiv.org/abs/2308.02409v1
- Date: Sun, 23 Jul 2023 03:16:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 01:49:17.661030
- Title: Mental Workload Estimation with Electroencephalogram Signals by
Combining Multi-Space Deep Models
- Title(参考訳): 多空間深層モデルを用いた脳波信号によるメンタルワークロード推定
- Authors: Hong-Hai Nguyen, Ngumimi Karen Iyortsuun, Hyung-Jeong Yang, Guee-Sang
Lee, and Soo-Hyung Kim
- Abstract要約: 脳が過剰に働きすぎると、人間の健康に悪影響を及ぼす可能性がある。
脳波(Electroencephalogram、EEG)は、脳に大量の情報を提供するため、研究者によって広く用いられている。
本稿では,メンタルワークロードを3つの状態と推定レベルに分類することを目的とする。
- 参考スコア(独自算出の注目度): 10.918967908202696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human brain is in a continuous state of activity during both work and
rest. Mental activity is a daily process, and when the brain is overworked, it
can have negative effects on human health. In recent years, great attention has
been paid to early detection of mental health problems because it can help
prevent serious health problems and improve quality of life. Several signals
are used to assess mental state, but the electroencephalogram (EEG) is widely
used by researchers because of the large amount of information it provides
about the brain. This paper aims to classify mental workload into three states
and estimate continuum levels. Our method combines multiple dimensions of space
to achieve the best results for mental estimation. In the time domain approach,
we use Temporal Convolutional Networks, and in the frequency domain, we propose
a new architecture called the Multi-Dimensional Residual Block, which combines
residual blocks.
- Abstract(参考訳): 人間の脳は、仕事と休息の間、継続的な活動状態にある。
精神活動は日常的なプロセスであり、脳が過剰に働くと人間の健康に悪影響を及ぼす可能性がある。
近年,深刻な健康問題の発生防止と生活の質向上に寄与するため,精神疾患の早期発見に注目が集まっている。
いくつかの信号は精神状態を評価するために使用されるが、脳波(EEG)は脳に関する大量の情報を提供するため、研究者によって広く用いられている。
本稿では,メンタルワーク負荷を3つの状態に分類し,連続レベルを推定することを目的とした。
本手法は,複数次元の空間を組み合わせ,心的推定に最適な結果を得る。
時間領域アプローチでは、時間的畳み込みネットワークを使用し、周波数領域では、残留ブロックを組み合わせた多次元残留ブロックと呼ばれる新しいアーキテクチャを提案する。
関連論文リスト
- Cross-subject Brain Functional Connectivity Analysis for Multi-task Cognitive State Evaluation [16.198003101055264]
本研究は脳機能と脳波信号とを併用し,複数の被験者の脳領域の関連性を把握し,リアルタイム認知状態を評価する。
分析と評価のために30件の被験者が取得され, 内的対象, 対人的対象, ジェンダー的基盤となる脳機能接続など, さまざまな視点で解釈される。
論文 参考訳(メタデータ) (2024-08-27T12:51:59Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - A Self-supervised Framework for Improved Data-Driven Monitoring of
Stress via Multi-modal Passive Sensing [7.084068935028644]
ストレス応答の生理的前駆体を追跡するための多モード半教師付きフレームワークを提案する。
本手法は,ウェアラブルデバイスと異なる領域と解像度のマルチモーダルデータの利用を可能にする。
実世界のデータのコーパスを用いて、知覚的ストレスに関するトレーニング実験を行う。
論文 参考訳(メタデータ) (2023-03-24T20:34:46Z) - Modeling cognitive load as a self-supervised brain rate with
electroencephalography and deep learning [2.741266294612776]
本研究では,脳波データからメンタルワークロードをモデリングするための,新たな自己教師型手法を提案する。
脳波データからスペクトル地形図を空間的に保存して脳速度変数に適合させることができる畳み込みリカレントニューラルネットワークである。
学習した認知活性化の準安定なブロックの存在は、それらは畳み込みによって誘導され、時間とともに互いに依存していないように見えるため、脳反応の非定常的性質と直感的に一致している。
論文 参考訳(メタデータ) (2022-09-21T07:44:21Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics
of Functional Connectivity [9.015698823470899]
空間と時間にまたがる機能的脳結合をモデル化するためのアプローチを提案する。
我々は、性別分類とインテリジェンス予測にヒューマン・コネクトーム・プロジェクト(Human Connectome Project)データセットを使用する。
その結果、性別の予測精度は94.4%、流体インテリジェンス(0.325対0.144)との相関は、空間と時間を別々に符号化するベースラインモデルと比較して改善された。
論文 参考訳(メタデータ) (2021-09-07T14:23:34Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
本稿では,畳み込みニューラルネットワークを用いた3次元脳磁気共鳴(MR)画像からの脳年齢回帰の課題に着目した。
予測モデルの性能を損なうことなく、できるだけ多くのノイズを入力に追加することを目的としたノイズモデルを実装した。
本手法は,英国バイオバンクの13750個の脳MR画像を用いて検討し,既存の神経病理学文献と一致している。
論文 参考訳(メタデータ) (2021-08-11T18:08:09Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
fMRIデータセットは複雑でヘテロジニアスな時系列で構成されていることを示す。
深層学習と幾何学的深層学習の様々なモデリング手法を比較し,今後の研究の道を開く。
私たちは、私たちの方法論の進歩が最終的に、健康と病気の脳のダイナミクスをより微妙に理解することで、臨床的および計算学的に関連があることを期待しています。
論文 参考訳(メタデータ) (2020-02-29T18:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。