論文の概要: BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2405.00077v1
- Date: Tue, 30 Apr 2024 10:53:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:35:46.972418
- Title: BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations
- Title(参考訳): BrainODE: グラフ支援ニューラル正規微分方程式による動的脳信号解析
- Authors: Kaiqiao Han, Yi Yang, Zijie Huang, Xuan Kan, Yang Yang, Ying Guo, Lifang He, Liang Zhan, Yizhou Sun, Wei Wang, Carl Yang,
- Abstract要約: 本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
- 参考スコア(独自算出の注目度): 67.79256149583108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain network analysis is vital for understanding the neural interactions regarding brain structures and functions, and identifying potential biomarkers for clinical phenotypes. However, widely used brain signals such as Blood Oxygen Level Dependent (BOLD) time series generated from functional Magnetic Resonance Imaging (fMRI) often manifest three challenges: (1) missing values, (2) irregular samples, and (3) sampling misalignment, due to instrumental limitations, impacting downstream brain network analysis and clinical outcome predictions. In this work, we propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals using Ordinary Differential Equations (ODE). By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point, mitigating the aforementioned three data challenges of brain signals altogether. Comprehensive experimental results on real-world neuroimaging datasets demonstrate the superior performance of BrainODE and its capability of addressing the three data challenges.
- Abstract(参考訳): 脳ネットワーク分析は、脳の構造と機能に関する神経的相互作用を理解し、臨床表現型に対する潜在的なバイオマーカーを特定するために不可欠である。
しかし、機能的磁気共鳴イメージング(fMRI)から発生する血液酸素レベル依存性(BOLD)時系列などの広く用いられている脳信号は、(1)値の欠如、(2)不規則なサンプル、(3)機器の制限による異常点のサンプリング、下流脳ネットワークの分析、臨床結果の予測の3つの課題をしばしば示している。
本研究では, 正規微分方程式(ODE)を用いて, 動的脳信号の連続モデリングを実現するBrainODEと呼ばれる新しいモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築し、前述の脳信号の3つのデータ課題を完全に軽減する。
実世界のニューロイメージングデータセットに関する総合的な実験結果は、BrainODEの優れた性能と、3つのデータ課題に対処する能力を示している。
関連論文リスト
- Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - BrainWave: A Brain Signal Foundation Model for Clinical Applications [21.624743680602744]
我々は、侵襲的および非侵襲的なニューラル記録のための最初の基礎モデルであるBrainWaveを提示する。
ブレインウェーブは、約16,000人の個人から4万時間以上の電気的脳記録(13.79TBのデータ)を事前訓練した。
分析の結果、BrainWaveは他の競合モデルよりも優れており、神経疾患の診断と診断における最先端のパフォーマンスを一貫して達成していることがわかった。
論文 参考訳(メタデータ) (2024-02-15T16:04:11Z) - Leveraging Brain Modularity Prior for Interpretable Representation
Learning of fMRI [38.236414924531196]
静止状態機能的磁気共鳴画像(rs-fMRI)は脳の自律神経活動を反映することができる。
従来の研究では, マシン/ディープ学習手法を用いてfMRI表現を抽出し, その後の分析を行う方法が提案されている。
本稿では,fMRI解析のためのBMR(Brain Modularity-Constrained dynamic Representation Learning)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-24T23:45:47Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Ranking of Communities in Multiplex Spatiotemporal Models of Brain
Dynamics [0.0]
隠れマルコフグラフモデル(HMs)と呼ぶ多重脳状態グラフモデルとして、ニューラルHMMの解釈を提案する。
この解釈により、ネットワーク分析技術の完全なレパートリーを使用して、動的脳活動を分析することができる。
ランダムウォークに基づく手法を用いて,脳領域の重要なコミュニティを決定するための新しいツールを開発した。
論文 参考訳(メタデータ) (2022-03-17T12:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。