A State-Space Perspective on Modelling and Inference for Online Skill Rating
- URL: http://arxiv.org/abs/2308.02414v3
- Date: Fri, 12 Apr 2024 17:51:43 GMT
- Title: A State-Space Perspective on Modelling and Inference for Online Skill Rating
- Authors: Samuel Duffield, Samuel Power, Lorenzo Rimella,
- Abstract summary: We introduce new approaches based on sequential Monte Carlo and discrete hidden Markov models.
We advocate for a state-space model perspective, wherein players' skills are represented as time-varying, and match results serve as observed quantities.
We examine the challenges of scaling up to numerous players and matches, highlighting the main approximations and reductions.
- Score: 1.9253333342733674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We summarise popular methods used for skill rating in competitive sports, along with their inferential paradigms and introduce new approaches based on sequential Monte Carlo and discrete hidden Markov models. We advocate for a state-space model perspective, wherein players' skills are represented as time-varying, and match results serve as observed quantities. We explore the steps to construct the model and the three stages of inference: filtering, smoothing and parameter estimation. We examine the challenges of scaling up to numerous players and matches, highlighting the main approximations and reductions which facilitate statistical and computational efficiency. We additionally compare approaches in a realistic experimental pipeline that can be easily reproduced and extended with our open-source Python package, https://github.com/SamDuffield/abile.
Related papers
- A Statistical Framework for Ranking LLM-Based Chatbots [57.59268154690763]
We propose a statistical framework that incorporates key advancements to address specific challenges in pairwise comparison analysis.
First, we introduce a factored tie model that enhances the ability to handle groupings of human-judged comparisons.
Second, we extend the framework to model covariance tiers between competitors, enabling deeper insights into performance relationships.
Third, we resolve optimization challenges arising from parameter non-uniqueness by introducing novel constraints.
arXiv Detail & Related papers (2024-12-24T12:54:19Z) - Semi-Supervised Crowd Counting with Contextual Modeling: Facilitating Holistic Understanding of Crowd Scenes [19.987151025364067]
This paper presents a new semi-supervised method for training a reliable crowd counting model.
We foster the model's intrinsic'subitizing' capability, which allows it to accurately estimate the count in regions.
Our method achieves the state-of-the-art performance, surpassing previous approaches by a large margin on challenging benchmarks.
arXiv Detail & Related papers (2023-10-16T12:42:43Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
We introduce a fundamentally different method for transferring knowledge across models that amounts to "merging" multiple models into one.
Our approach effectively involves computing a weighted average of the models' parameters.
We show that our merging procedure makes it possible to combine models in previously unexplored ways.
arXiv Detail & Related papers (2021-11-18T17:59:35Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Visualising Deep Network's Time-Series Representations [93.73198973454944]
Despite the popularisation of machine learning models, more often than not they still operate as black boxes with no insight into what is happening inside the model.
In this paper, a method that addresses that issue is proposed, with a focus on visualising multi-dimensional time-series data.
Experiments on a high-frequency stock market dataset show that the method provides fast and discernible visualisations.
arXiv Detail & Related papers (2021-03-12T09:53:34Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
We show that this approach outperforms generic samplers in a number of difficult settings.
We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data.
arXiv Detail & Related papers (2021-02-08T20:08:50Z) - Modeling Score Distributions and Continuous Covariates: A Bayesian
Approach [8.772459063453285]
We develop a generative model of the match and non-match score distributions over continuous covariates.
We use mixture models to capture arbitrary distributions and local basis functions.
Three experiments demonstrate the accuracy and effectiveness of our approach.
arXiv Detail & Related papers (2020-09-21T02:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.