A Statistical Framework for Ranking LLM-Based Chatbots
- URL: http://arxiv.org/abs/2412.18407v1
- Date: Tue, 24 Dec 2024 12:54:19 GMT
- Title: A Statistical Framework for Ranking LLM-Based Chatbots
- Authors: Siavash Ameli, Siyuan Zhuang, Ion Stoica, Michael W. Mahoney,
- Abstract summary: We propose a statistical framework that incorporates key advancements to address specific challenges in pairwise comparison analysis.
First, we introduce a factored tie model that enhances the ability to handle groupings of human-judged comparisons.
Second, we extend the framework to model covariance tiers between competitors, enabling deeper insights into performance relationships.
Third, we resolve optimization challenges arising from parameter non-uniqueness by introducing novel constraints.
- Score: 57.59268154690763
- License:
- Abstract: Large language models (LLMs) have transformed natural language processing, with frameworks like Chatbot Arena providing pioneering platforms for evaluating these models. By facilitating millions of pairwise comparisons based on human judgments, Chatbot Arena has become a cornerstone in LLM evaluation, offering rich datasets for ranking models in open-ended conversational tasks. Building upon this foundation, we propose a statistical framework that incorporates key advancements to address specific challenges in pairwise comparison analysis. First, we introduce a factored tie model that enhances the ability to handle ties -- an integral aspect of human-judged comparisons -- significantly improving the model's fit to observed data. Second, we extend the framework to model covariance between competitors, enabling deeper insights into performance relationships and facilitating intuitive groupings into performance tiers. Third, we resolve optimization challenges arising from parameter non-uniqueness by introducing novel constraints, ensuring stable and interpretable parameter estimation. Through rigorous evaluation and extensive experimentation, our framework demonstrates substantial improvements over existing methods in modeling pairwise comparison data. To support reproducibility and practical adoption, we release leaderbot, an open-source Python package implementing our models and analyses.
Related papers
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a new sandbox suite tailored for integrated data-model co-development.
This sandbox provides a feedback-driven experimental platform, enabling cost-effective and guided refinement of both data and models.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
We establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the foundation model paradigm for speech.
We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads.
arXiv Detail & Related papers (2024-04-15T00:03:16Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Evaluating Text Coherence at Sentence and Paragraph Levels [17.99797111176988]
We investigate the adaptation of existing sentence ordering methods to a paragraph ordering task.
We also compare the learnability and robustness of existing models by artificially creating mini datasets and noisy datasets.
We conclude that the recurrent graph neural network-based model is an optimal choice for coherence modeling.
arXiv Detail & Related papers (2020-06-05T03:31:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.