Noise removal methods on ambulatory EEG: A Survey
- URL: http://arxiv.org/abs/2308.02437v1
- Date: Mon, 17 Jul 2023 02:31:02 GMT
- Title: Noise removal methods on ambulatory EEG: A Survey
- Authors: Sarthak Johari, Gowri Namratha Meedinti, Radhakrishnan Delhibabu and
Deepak Joshi
- Abstract summary: More than 100 research papers have been discussed to discern the techniques for detecting and removal of a noise.
The pattern recognition required to detect ambulatory method, eye open and close, varies with different conditions of EEG datasets.
- Score: 2.580765958706854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over many decades, research is being attempted for the removal of noise in
the ambulatory EEG. In this respect, an enormous number of research papers is
published for identification of noise removal, It is difficult to present a
detailed review of all these literature. Therefore, in this paper, an attempt
has been made to review the detection and removal of an noise. More than 100
research papers have been discussed to discern the techniques for detecting and
removal the ambulatory EEG. Further, the literature survey shows that the
pattern recognition required to detect ambulatory method, eye open and close,
varies with different conditions of EEG datasets. This is mainly due to the
fact that EEG detected under different conditions has different
characteristics. This is, in turn, necessitates the identification of pattern
recognition technique to effectively distinguish EEG noise data from a various
condition of EEG data.
Related papers
- EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network [11.491355463353731]
We introduce the Retnet from natural language processing to EEG denoising.
Direct application of Retnet to EEG denoising is unfeasible due to the one-dimensional nature of EEG signals.
We propose the signal embedding method, transforming one-dimensional EEG signals into two dimensions for use as network inputs.
arXiv Detail & Related papers (2024-03-20T15:04:21Z) - A multi-artifact EEG denoising by frequency-based deep learning [5.231056284485742]
We develop a novel EEG denoising model that operates in the frequency domain, leveraging prior knowledge about noise spectral features.
Performance evaluation on the EEGdenoiseNet dataset shows that the proposed model achieves optimal results according to both temporal and spectral metrics.
arXiv Detail & Related papers (2023-10-26T12:01:47Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Automatic Detection of Noisy Electrocardiogram Signals without Explicit
Noise Labels [12.176026483486252]
We present a two-stage deep learning-based framework to automatically detect noisy ECG samples.
We observe that the framework can detect slightly and highly noisy ECG samples effectively.
We also study the transfer of the model learned on one dataset to another dataset and observe that the framework effectively detects noisy ECG samples.
arXiv Detail & Related papers (2022-08-08T17:16:16Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
Current artifact detection pipelines are resource-hungry and rely heavily on hand-crafted features.
We propose E4G, a deep learning framework for high frequency EEG artifact detection.
Our framework exploits the early exit paradigm, building an implicit ensemble of models capable of capturing uncertainty.
arXiv Detail & Related papers (2021-07-21T07:05:42Z) - Artifact Detection and Correction in EEG data: A Review [0.0]
EEG applications are limited by low signal-to-noise ratios.
Many techniques have been proposed to detect and correct these artifacts.
In this paper we review a variety of recent and classical techniques for EEG data artifact detection and correction.
arXiv Detail & Related papers (2021-06-10T18:16:21Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.