A multi-artifact EEG denoising by frequency-based deep learning
- URL: http://arxiv.org/abs/2310.17335v1
- Date: Thu, 26 Oct 2023 12:01:47 GMT
- Title: A multi-artifact EEG denoising by frequency-based deep learning
- Authors: Matteo Gabardi, Aurora Saibene, Francesca Gasparini, Daniele Rizzo,
Fabio Antonio Stella
- Abstract summary: We develop a novel EEG denoising model that operates in the frequency domain, leveraging prior knowledge about noise spectral features.
Performance evaluation on the EEGdenoiseNet dataset shows that the proposed model achieves optimal results according to both temporal and spectral metrics.
- Score: 5.231056284485742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalographic (EEG) signals are fundamental to neuroscience
research and clinical applications such as brain-computer interfaces and
neurological disorder diagnosis. These signals are typically a combination of
neurological activity and noise, originating from various sources, including
physiological artifacts like ocular and muscular movements. Under this setting,
we tackle the challenge of distinguishing neurological activity from
noise-related sources. We develop a novel EEG denoising model that operates in
the frequency domain, leveraging prior knowledge about noise spectral features
to adaptively compute optimal convolutional filters for noise separation. The
model is trained to learn an empirical relationship connecting the spectral
characteristics of noise and noisy signal to a non-linear transformation which
allows signal denoising. Performance evaluation on the EEGdenoiseNet dataset
shows that the proposed model achieves optimal results according to both
temporal and spectral metrics. The model is found to remove physiological
artifacts from input EEG data, thus achieving effective EEG denoising. Indeed,
the model performance either matches or outperforms that achieved by benchmark
models, proving to effectively remove both muscle and ocular artifacts without
the need to perform any training on the particular type of artifact.
Related papers
- ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
arXiv Detail & Related papers (2024-09-11T15:05:40Z) - EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network [11.491355463353731]
We introduce the Retnet from natural language processing to EEG denoising.
Direct application of Retnet to EEG denoising is unfeasible due to the one-dimensional nature of EEG signals.
We propose the signal embedding method, transforming one-dimensional EEG signals into two dimensions for use as network inputs.
arXiv Detail & Related papers (2024-03-20T15:04:21Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Power Spectral Density-Based Resting-State EEG Classification of
First-Episode Psychosis [1.3416169841532526]
We show the effectiveness of stimulus-independent EEG in identifying the abnormal activity patterns of pathological brains.
A generalized model incorporating multiple frequency bands should be more efficient in associating potential EEG biomarkers with First-Episode Psychosis (FEP)
A comprehensive discussion of our preprocessing methods for PSD analysis and a detailed comparison of different models are included in this paper.
arXiv Detail & Related papers (2022-11-23T00:28:41Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
We propose a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input.
The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals.
arXiv Detail & Related papers (2021-09-18T14:51:24Z) - Noise Reduction in X-ray Photon Correlation Spectroscopy with
Convolutional Neural Networks Encoder-Decoder Models [0.0]
We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions.
CNN-ED models are based on Convolutional Neural Network-Decoder (CNN-ED) models.
We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions.
arXiv Detail & Related papers (2021-02-07T18:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.