A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and
Prospects
- URL: http://arxiv.org/abs/2308.02457v1
- Date: Fri, 4 Aug 2023 16:49:54 GMT
- Title: A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and
Prospects
- Authors: Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan, Bo Xiong, Heng Liu,
Linhao Luo, Tengfei Liu, Yongli Hu, Baocai Yin, Wen Gao
- Abstract summary: temporal characteristics are prominently evident in a substantial volume of knowledge.
The continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset are cited.
The task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information.
- Score: 73.44022660932087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal characteristics are prominently evident in a substantial volume of
knowledge, which underscores the pivotal role of Temporal Knowledge Graphs
(TKGs) in both academia and industry. However, TKGs often suffer from
incompleteness for three main reasons: the continuous emergence of new
knowledge, the weakness of the algorithm for extracting structured information
from unstructured data, and the lack of information in the source dataset.
Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted
increasing attention, aiming to predict missing items based on the available
information. In this paper, we provide a comprehensive review of TKGC methods
and their details. Specifically, this paper mainly consists of three
components, namely, 1)Background, which covers the preliminaries of TKGC
methods, loss functions required for training, as well as the dataset and
evaluation protocol; 2)Interpolation, that estimates and predicts the missing
elements or set of elements through the relevant available information. It
further categorizes related TKGC methods based on how to process temporal
information; 3)Extrapolation, which typically focuses on continuous TKGs and
predicts future events, and then classifies all extrapolation methods based on
the algorithms they utilize. We further pinpoint the challenges and discuss
future research directions of TKGC.
Related papers
- Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains [8.472388165833292]
This paper introduces a new generative completion framework called Generative Subgraph-based KGC (GS-KGC)
GS-KGC employs a question-answering format to directly generate target entities, addressing the challenge of questions having multiple possible answers.
Our method generates negative samples using known facts to facilitate the discovery of new information.
arXiv Detail & Related papers (2024-08-20T13:13:41Z) - Multi-level Shared Knowledge Guided Learning for Knowledge Graph Completion [26.40236457109129]
We introduce a multi-level Shared Knowledge Guided learning method (SKG) that operates at both the dataset and task levels.
On the dataset level, SKG-KGC broadens the original dataset by identifying shared features within entity sets via text summarization.
On the task level, for the three typical KGC subtasks - head entity prediction, relation prediction, and tail entity prediction - we present an innovative multi-task learning architecture with dynamically adjusted loss weights.
arXiv Detail & Related papers (2024-05-08T03:27:46Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
We introduce a systematic framework, Data-centric Graph Machine Learning (DC-GML), that encompasses all stages of the graph data lifecycle.
A thorough taxonomy of each stage is presented to answer three critical graph-centric questions.
We pinpoint the future prospects of the DC-GML domain, providing insights to navigate its advancements and applications.
arXiv Detail & Related papers (2023-09-20T00:40:13Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
Temporal KGs (TKGs) extend traditional Knowledge Graphs by associating static triples with timestamps forming quadruples.
We propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs.
We show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation.
arXiv Detail & Related papers (2023-02-11T09:52:26Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
We propose a few-shot out-of-graph (OOG) link prediction task for temporal knowledge graphs (TKGs)
We predict the missing entities from the links concerning unseen entities by employing a meta-learning framework.
Our model achieves superior performance on all three datasets.
arXiv Detail & Related papers (2022-11-15T14:23:07Z) - Temporal Knowledge Graph Completion: A Survey [24.35073672695095]
Knowledge graph completion (KGC) can predict missing links and is crucial for real-world knowledge graphs.
Recent methods have shown improved predictive results by further incorporating the timestamps of facts.
arXiv Detail & Related papers (2022-01-16T05:43:49Z) - Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated
Recurrent Memory Network [54.735400754548635]
Aspect-level sentiment classification (ASC) aims to predict the fine-grained sentiment polarity towards a given aspect mentioned in a review.
Despite recent advances in ASC, enabling machines to preciously infer aspect sentiments is still challenging.
This paper tackles two challenges in ASC: (1) due to lack of aspect knowledge, aspect representation is inadequate to represent aspect's exact meaning and property information; (2) prior works only capture either local syntactic information or global relational information, thus missing either one of them leads to insufficient syntactic information.
arXiv Detail & Related papers (2021-08-05T03:39:30Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.